L(s) = 1 | + (0.309 − 0.309i)2-s + (−2.18 − 0.905i)3-s + 1.80i·4-s + (0.192 − 0.465i)5-s + (−0.955 + 0.395i)6-s + (1.17 + 1.17i)8-s + (1.83 + 1.83i)9-s + (−0.0842 − 0.203i)10-s + (2.37 − 0.983i)11-s + (1.63 − 3.95i)12-s + 0.364i·13-s + (−0.842 + 0.842i)15-s − 2.88·16-s + (−3.64 − 1.93i)17-s + 1.13·18-s + (−1.60 + 1.60i)19-s + ⋯ |
L(s) = 1 | + (0.218 − 0.218i)2-s + (−1.26 − 0.522i)3-s + 0.904i·4-s + (0.0861 − 0.208i)5-s + (−0.390 + 0.161i)6-s + (0.416 + 0.416i)8-s + (0.611 + 0.611i)9-s + (−0.0266 − 0.0643i)10-s + (0.716 − 0.296i)11-s + (0.472 − 1.14i)12-s + 0.101i·13-s + (−0.217 + 0.217i)15-s − 0.722·16-s + (−0.883 − 0.469i)17-s + 0.267·18-s + (−0.368 + 0.368i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.427 - 0.904i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.427 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.753988 + 0.477492i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.753988 + 0.477492i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 17 | \( 1 + (3.64 + 1.93i)T \) |
good | 2 | \( 1 + (-0.309 + 0.309i)T - 2iT^{2} \) |
| 3 | \( 1 + (2.18 + 0.905i)T + (2.12 + 2.12i)T^{2} \) |
| 5 | \( 1 + (-0.192 + 0.465i)T + (-3.53 - 3.53i)T^{2} \) |
| 11 | \( 1 + (-2.37 + 0.983i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 0.364iT - 13T^{2} \) |
| 19 | \( 1 + (1.60 - 1.60i)T - 19iT^{2} \) |
| 23 | \( 1 + (4.60 - 1.90i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (1.22 - 2.96i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-8.10 - 3.35i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-9.09 - 3.76i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-3.41 - 8.24i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (0.580 + 0.580i)T + 43iT^{2} \) |
| 47 | \( 1 - 0.763iT - 47T^{2} \) |
| 53 | \( 1 + (3.95 - 3.95i)T - 53iT^{2} \) |
| 59 | \( 1 + (0.396 + 0.396i)T + 59iT^{2} \) |
| 61 | \( 1 + (-1.68 - 4.07i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 5.80T + 67T^{2} \) |
| 71 | \( 1 + (7.04 + 2.91i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (0.0934 - 0.225i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-10.4 + 4.31i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (11.8 - 11.8i)T - 83iT^{2} \) |
| 89 | \( 1 - 15.9iT - 89T^{2} \) |
| 97 | \( 1 + (2.45 - 5.91i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76984796615293271403236641293, −9.510395813990489686497097201385, −8.606663103675507129635796967273, −7.69590225616156992770994454415, −6.71679949167356916935852721937, −6.15821653378622722559376126151, −4.96475883798108813881220306579, −4.17425752166654348235260950624, −2.85622306001289125684441503023, −1.32339824846691596885103573158,
0.52191983194133588849418617814, 2.20968392564761614687828609556, 4.30720896186554258185753330020, 4.56863371728427805988241767702, 5.94852703242623433054557651866, 6.16125578760568706831552649944, 7.05723778726591253646518055481, 8.467659547473058016010302750833, 9.574787050782210899485170047549, 10.18087984418146733431939758311