L(s) = 1 | + (−0.624 − 2.33i)2-s + (−1.07 + 0.141i)3-s + (−3.31 + 1.91i)4-s + (0.607 − 0.465i)5-s + (1 + 2.41i)6-s + (3.12 + 3.12i)8-s + (−1.76 + 0.473i)9-s + (−1.46 − 1.12i)10-s + (−1.59 + 2.07i)11-s + (3.28 − 2.52i)12-s + 1.41i·13-s + (−0.585 + 0.585i)15-s + (1.50 − 2.59i)16-s + (1.18 − 3.94i)17-s + (2.20 + 3.82i)18-s + (0.214 + 0.800i)19-s + ⋯ |
L(s) = 1 | + (−0.441 − 1.64i)2-s + (−0.619 + 0.0815i)3-s + (−1.65 + 0.957i)4-s + (0.271 − 0.208i)5-s + (0.408 + 0.985i)6-s + (1.10 + 1.10i)8-s + (−0.588 + 0.157i)9-s + (−0.463 − 0.355i)10-s + (−0.479 + 0.625i)11-s + (0.949 − 0.728i)12-s + 0.392i·13-s + (−0.151 + 0.151i)15-s + (0.375 − 0.649i)16-s + (0.287 − 0.957i)17-s + (0.520 + 0.901i)18-s + (0.0491 + 0.183i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.428 + 0.903i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.428 + 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.624196 - 0.394572i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.624196 - 0.394572i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 17 | \( 1 + (-1.18 + 3.94i)T \) |
good | 2 | \( 1 + (0.624 + 2.33i)T + (-1.73 + i)T^{2} \) |
| 3 | \( 1 + (1.07 - 0.141i)T + (2.89 - 0.776i)T^{2} \) |
| 5 | \( 1 + (-0.607 + 0.465i)T + (1.29 - 4.82i)T^{2} \) |
| 11 | \( 1 + (1.59 - 2.07i)T + (-2.84 - 10.6i)T^{2} \) |
| 13 | \( 1 - 1.41iT - 13T^{2} \) |
| 19 | \( 1 + (-0.214 - 0.800i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-4.73 - 0.623i)T + (22.2 + 5.95i)T^{2} \) |
| 29 | \( 1 + (0.292 + 0.121i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-7.77 + 1.02i)T + (29.9 - 8.02i)T^{2} \) |
| 37 | \( 1 + (-5.62 - 7.32i)T + (-9.57 + 35.7i)T^{2} \) |
| 41 | \( 1 + (-1.12 + 0.464i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (0.585 + 0.585i)T + 43iT^{2} \) |
| 47 | \( 1 + (4.47 + 2.58i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.36 - 0.366i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.55 + 5.79i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-0.499 + 3.79i)T + (-58.9 - 15.7i)T^{2} \) |
| 67 | \( 1 + (0.585 + 1.01i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.07 - 5i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-1.68 - 12.8i)T + (-70.5 + 18.8i)T^{2} \) |
| 79 | \( 1 + (4.73 + 0.623i)T + (76.3 + 20.4i)T^{2} \) |
| 83 | \( 1 + (-8.24 + 8.24i)T - 83iT^{2} \) |
| 89 | \( 1 + (-5.70 - 3.29i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-9.53 - 3.94i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08745633811450970239633429444, −9.596791133735279288181586138790, −8.743858222702473702857530458086, −7.80750875756892380277893451077, −6.54414567227284432874802962494, −5.24842557436027885991782057470, −4.60508482637185957018074244828, −3.21834559048962873200246537726, −2.32867992856900863897719868944, −0.962180032811343376292840815162,
0.61467831607134358317994542881, 2.91456067259697952799517102215, 4.56710500612433391687161635612, 5.57884965172839315735632760845, 6.04771349836047470722412086298, 6.74485217103139541501925007988, 7.82992447588179079469901262836, 8.417545651456787161222451045556, 9.215440128930318915521503853153, 10.25644004927665751584088046576