L(s) = 1 | + (−1.16 − 0.848i)3-s + (−1.32 + 4.08i)5-s + (2.57 − 1.87i)7-s + (−0.283 − 0.872i)9-s + (−0.809 + 3.21i)11-s + (0.275 + 0.848i)13-s + (5.01 − 3.64i)15-s + (−0.0463 + 0.142i)17-s + (−0.809 − 0.587i)19-s − 4.59·21-s + 1.71·23-s + (−10.8 − 7.89i)25-s + (−1.74 + 5.37i)27-s + (−5.22 + 3.79i)29-s + (1.86 + 5.74i)31-s + ⋯ |
L(s) = 1 | + (−0.674 − 0.489i)3-s + (−0.593 + 1.82i)5-s + (0.973 − 0.707i)7-s + (−0.0945 − 0.290i)9-s + (−0.243 + 0.969i)11-s + (0.0764 + 0.235i)13-s + (1.29 − 0.940i)15-s + (−0.0112 + 0.0345i)17-s + (−0.185 − 0.134i)19-s − 1.00·21-s + 0.356·23-s + (−2.17 − 1.57i)25-s + (−0.336 + 1.03i)27-s + (−0.969 + 0.704i)29-s + (0.335 + 1.03i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 836 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 836 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.294326 + 0.593692i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.294326 + 0.593692i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (0.809 - 3.21i)T \) |
| 19 | \( 1 + (0.809 + 0.587i)T \) |
good | 3 | \( 1 + (1.16 + 0.848i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (1.32 - 4.08i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-2.57 + 1.87i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-0.275 - 0.848i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (0.0463 - 0.142i)T + (-13.7 - 9.99i)T^{2} \) |
| 23 | \( 1 - 1.71T + 23T^{2} \) |
| 29 | \( 1 + (5.22 - 3.79i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-1.86 - 5.74i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (4.78 - 3.47i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (6.38 + 4.63i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 9.58T + 43T^{2} \) |
| 47 | \( 1 + (-3.17 - 2.30i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-3.76 - 11.5i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-1.74 + 1.26i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-0.889 + 2.73i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 0.0354T + 67T^{2} \) |
| 71 | \( 1 + (4.84 - 14.9i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (3.16 - 2.29i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-0.789 - 2.42i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-0.380 + 1.17i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 0.565T + 89T^{2} \) |
| 97 | \( 1 + (1.08 + 3.34i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62140430877248928640248164108, −10.09748440242049539537193958204, −8.657798683080725511551993676795, −7.49731542058445402955213807481, −7.09238385000204310967555732731, −6.52614234132947986937429551276, −5.26138489882371405397044045414, −4.11060483285159314372542688169, −3.09869115483831248314023201442, −1.67828441378672123691493092143,
0.35364957760752139279940225567, 1.88506371712207558101134904247, 3.76317294363545918120800914771, 4.83017916474974646057462795231, 5.24630414921289254307231841503, 5.94233949950729879360605866695, 7.74806415019534484559215440772, 8.346263584363790362199354850689, 8.826474238028886716190374165860, 9.883331039602109011928678843916