L(s) = 1 | + (−0.0644 + 2.82i)2-s + (−1.5 − 2.59i)3-s + (−7.99 − 0.364i)4-s + (−4.32 − 2.49i)5-s + (7.44 − 4.07i)6-s + (15.5 − 10.1i)7-s + (1.54 − 22.5i)8-s + (−4.5 + 7.79i)9-s + (7.34 − 12.0i)10-s + (39.8 − 23.0i)11-s + (11.0 + 21.3i)12-s − 88.6i·13-s + (27.6 + 44.4i)14-s + 14.9i·15-s + (63.7 + 5.82i)16-s + (−86.9 + 50.2i)17-s + ⋯ |
L(s) = 1 | + (−0.0227 + 0.999i)2-s + (−0.288 − 0.499i)3-s + (−0.998 − 0.0455i)4-s + (−0.387 − 0.223i)5-s + (0.506 − 0.277i)6-s + (0.837 − 0.547i)7-s + (0.0682 − 0.997i)8-s + (−0.166 + 0.288i)9-s + (0.232 − 0.381i)10-s + (1.09 − 0.630i)11-s + (0.265 + 0.512i)12-s − 1.89i·13-s + (0.527 + 0.849i)14-s + 0.258i·15-s + (0.995 + 0.0909i)16-s + (−1.24 + 0.716i)17-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(0.801+0.597i)Λ(4−s)
Λ(s)=(=(84s/2ΓC(s+3/2)L(s)(0.801+0.597i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
0.801+0.597i
|
Analytic conductor: |
4.95616 |
Root analytic conductor: |
2.22624 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :3/2), 0.801+0.597i)
|
Particular Values
L(2) |
≈ |
1.03830−0.344490i |
L(21) |
≈ |
1.03830−0.344490i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0644−2.82i)T |
| 3 | 1+(1.5+2.59i)T |
| 7 | 1+(−15.5+10.1i)T |
good | 5 | 1+(4.32+2.49i)T+(62.5+108.i)T2 |
| 11 | 1+(−39.8+23.0i)T+(665.5−1.15e3i)T2 |
| 13 | 1+88.6iT−2.19e3T2 |
| 17 | 1+(86.9−50.2i)T+(2.45e3−4.25e3i)T2 |
| 19 | 1+(−4.47+7.75i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−47.8−27.6i)T+(6.08e3+1.05e4i)T2 |
| 29 | 1−96.5T+2.43e4T2 |
| 31 | 1+(125.+216.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(159.−276.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1−65.9iT−6.89e4T2 |
| 43 | 1+55.9iT−7.95e4T2 |
| 47 | 1+(−146.+253.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−74.3−128.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−119.−206.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−597.−345.i)T+(1.13e5+1.96e5i)T2 |
| 67 | 1+(−575.+332.i)T+(1.50e5−2.60e5i)T2 |
| 71 | 1−1.02e3iT−3.57e5T2 |
| 73 | 1+(−251.+145.i)T+(1.94e5−3.36e5i)T2 |
| 79 | 1+(−173.−100.i)T+(2.46e5+4.26e5i)T2 |
| 83 | 1+409.T+5.71e5T2 |
| 89 | 1+(−91.6−52.9i)T+(3.52e5+6.10e5i)T2 |
| 97 | 1−301.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.70893680388599281184943069742, −12.90496171802850656914060858423, −11.57495592660144492281948142302, −10.37630824860015266104019192760, −8.625080248123726576904053419786, −7.943611650104223358981928076660, −6.70547490595157215550773194466, −5.45647260129955161325193387711, −4.02690414081283509855569658911, −0.75840101505453992211111743762,
1.92220163136786090469645100770, 3.99122629532779565027976049628, 4.92718292136699267669818071871, 6.91421307914145690315073759486, 8.843963077009536935432684818266, 9.373688278973023697848210151558, 11.00659903403709215839227077481, 11.54973476362529443946993830548, 12.34252725443653622770873808165, 14.03618023729663770501319070448