L(s) = 1 | + (−0.0644 + 2.82i)2-s + (−1.5 − 2.59i)3-s + (−7.99 − 0.364i)4-s + (−4.32 − 2.49i)5-s + (7.44 − 4.07i)6-s + (15.5 − 10.1i)7-s + (1.54 − 22.5i)8-s + (−4.5 + 7.79i)9-s + (7.34 − 12.0i)10-s + (39.8 − 23.0i)11-s + (11.0 + 21.3i)12-s − 88.6i·13-s + (27.6 + 44.4i)14-s + 14.9i·15-s + (63.7 + 5.82i)16-s + (−86.9 + 50.2i)17-s + ⋯ |
L(s) = 1 | + (−0.0227 + 0.999i)2-s + (−0.288 − 0.499i)3-s + (−0.998 − 0.0455i)4-s + (−0.387 − 0.223i)5-s + (0.506 − 0.277i)6-s + (0.837 − 0.547i)7-s + (0.0682 − 0.997i)8-s + (−0.166 + 0.288i)9-s + (0.232 − 0.381i)10-s + (1.09 − 0.630i)11-s + (0.265 + 0.512i)12-s − 1.89i·13-s + (0.527 + 0.849i)14-s + 0.258i·15-s + (0.995 + 0.0909i)16-s + (−1.24 + 0.716i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 + 0.597i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.801 + 0.597i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.03830 - 0.344490i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03830 - 0.344490i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0644 - 2.82i)T \) |
| 3 | \( 1 + (1.5 + 2.59i)T \) |
| 7 | \( 1 + (-15.5 + 10.1i)T \) |
good | 5 | \( 1 + (4.32 + 2.49i)T + (62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-39.8 + 23.0i)T + (665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 88.6iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (86.9 - 50.2i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-4.47 + 7.75i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-47.8 - 27.6i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 96.5T + 2.43e4T^{2} \) |
| 31 | \( 1 + (125. + 216. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (159. - 276. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 65.9iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 55.9iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (-146. + 253. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-74.3 - 128. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-119. - 206. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-597. - 345. i)T + (1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-575. + 332. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 1.02e3iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-251. + 145. i)T + (1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-173. - 100. i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 409.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-91.6 - 52.9i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 301. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.70893680388599281184943069742, −12.90496171802850656914060858423, −11.57495592660144492281948142302, −10.37630824860015266104019192760, −8.625080248123726576904053419786, −7.943611650104223358981928076660, −6.70547490595157215550773194466, −5.45647260129955161325193387711, −4.02690414081283509855569658911, −0.75840101505453992211111743762,
1.92220163136786090469645100770, 3.99122629532779565027976049628, 4.92718292136699267669818071871, 6.91421307914145690315073759486, 8.843963077009536935432684818266, 9.373688278973023697848210151558, 11.00659903403709215839227077481, 11.54973476362529443946993830548, 12.34252725443653622770873808165, 14.03618023729663770501319070448