L(s) = 1 | + (1.70 + 5.39i)2-s + (−12.7 − 8.95i)3-s + (−26.2 + 18.3i)4-s + 95.2i·5-s + (26.5 − 84.0i)6-s − 49i·7-s + (−143. − 110. i)8-s + (82.6 + 228. i)9-s + (−513. + 162. i)10-s − 125.·11-s + (498. + 0.191i)12-s − 253.·13-s + (264. − 83.4i)14-s + (852. − 1.21e3i)15-s + (349. − 962. i)16-s − 1.11e3i·17-s + ⋯ |
L(s) = 1 | + (0.301 + 0.953i)2-s + (−0.818 − 0.574i)3-s + (−0.818 + 0.574i)4-s + 1.70i·5-s + (0.301 − 0.953i)6-s − 0.377i·7-s + (−0.793 − 0.608i)8-s + (0.340 + 0.940i)9-s + (−1.62 + 0.512i)10-s − 0.313·11-s + (0.999 + 0.000383i)12-s − 0.416·13-s + (0.360 − 0.113i)14-s + (0.978 − 1.39i)15-s + (0.340 − 0.940i)16-s − 0.934i·17-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(−0.000383+0.999i)Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)(−0.000383+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
−0.000383+0.999i
|
Analytic conductor: |
13.4722 |
Root analytic conductor: |
3.67045 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(71,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :5/2), −0.000383+0.999i)
|
Particular Values
L(3) |
≈ |
0.00723078−0.00723356i |
L(21) |
≈ |
0.00723078−0.00723356i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.70−5.39i)T |
| 3 | 1+(12.7+8.95i)T |
| 7 | 1+49iT |
good | 5 | 1−95.2iT−3.12e3T2 |
| 11 | 1+125.T+1.61e5T2 |
| 13 | 1+253.T+3.71e5T2 |
| 17 | 1+1.11e3iT−1.41e6T2 |
| 19 | 1+1.55e3iT−2.47e6T2 |
| 23 | 1+237.T+6.43e6T2 |
| 29 | 1+7.32e3iT−2.05e7T2 |
| 31 | 1−7.61e3iT−2.86e7T2 |
| 37 | 1+2.78e3T+6.93e7T2 |
| 41 | 1−1.81e4iT−1.15e8T2 |
| 43 | 1+6.77e3iT−1.47e8T2 |
| 47 | 1+1.99e4T+2.29e8T2 |
| 53 | 1−1.89e4iT−4.18e8T2 |
| 59 | 1+4.32e4T+7.14e8T2 |
| 61 | 1−1.23e4T+8.44e8T2 |
| 67 | 1+4.92e4iT−1.35e9T2 |
| 71 | 1−3.10e4T+1.80e9T2 |
| 73 | 1+4.59e4T+2.07e9T2 |
| 79 | 1+8.17e4iT−3.07e9T2 |
| 83 | 1+5.75e4T+3.93e9T2 |
| 89 | 1−1.20e5iT−5.58e9T2 |
| 97 | 1−2.52e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.03790671868331933255310383687, −13.38659272703216485445499013470, −11.97351508593036836629400822396, −10.96310339485530394306753575760, −9.819511335021466091694135506572, −7.78857630081930086528600037356, −7.01394550726800607019692172967, −6.26623653535599467586553638564, −4.80318401987669138133816759708, −2.88963713775046128894864088308,
0.00439549853971399165938518163, 1.50327736251664077892305301446, 3.91005136705617839747148647531, 5.01690161788142947800063626378, 5.79280058389726227413694622500, 8.403881803960862713021142643491, 9.385977383994689167093637818319, 10.33517335300376506811932269648, 11.60226593514410812409214860360, 12.50070633752654277509273000995