L(s) = 1 | + (1.70 + 5.39i)2-s + (−12.7 − 8.95i)3-s + (−26.2 + 18.3i)4-s + 95.2i·5-s + (26.5 − 84.0i)6-s − 49i·7-s + (−143. − 110. i)8-s + (82.6 + 228. i)9-s + (−513. + 162. i)10-s − 125.·11-s + (498. + 0.191i)12-s − 253.·13-s + (264. − 83.4i)14-s + (852. − 1.21e3i)15-s + (349. − 962. i)16-s − 1.11e3i·17-s + ⋯ |
L(s) = 1 | + (0.301 + 0.953i)2-s + (−0.818 − 0.574i)3-s + (−0.818 + 0.574i)4-s + 1.70i·5-s + (0.301 − 0.953i)6-s − 0.377i·7-s + (−0.793 − 0.608i)8-s + (0.340 + 0.940i)9-s + (−1.62 + 0.512i)10-s − 0.313·11-s + (0.999 + 0.000383i)12-s − 0.416·13-s + (0.360 − 0.113i)14-s + (0.978 − 1.39i)15-s + (0.340 − 0.940i)16-s − 0.934i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.000383 + 0.999i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.000383 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.00723078 - 0.00723356i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00723078 - 0.00723356i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.70 - 5.39i)T \) |
| 3 | \( 1 + (12.7 + 8.95i)T \) |
| 7 | \( 1 + 49iT \) |
good | 5 | \( 1 - 95.2iT - 3.12e3T^{2} \) |
| 11 | \( 1 + 125.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 253.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 1.11e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 1.55e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 237.T + 6.43e6T^{2} \) |
| 29 | \( 1 + 7.32e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 7.61e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 + 2.78e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 1.81e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 + 6.77e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 1.99e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.89e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 4.32e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 1.23e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 4.92e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 3.10e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 4.59e4T + 2.07e9T^{2} \) |
| 79 | \( 1 + 8.17e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 + 5.75e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 1.20e5iT - 5.58e9T^{2} \) |
| 97 | \( 1 - 2.52e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.03790671868331933255310383687, −13.38659272703216485445499013470, −11.97351508593036836629400822396, −10.96310339485530394306753575760, −9.819511335021466091694135506572, −7.78857630081930086528600037356, −7.01394550726800607019692172967, −6.26623653535599467586553638564, −4.80318401987669138133816759708, −2.88963713775046128894864088308,
0.00439549853971399165938518163, 1.50327736251664077892305301446, 3.91005136705617839747148647531, 5.01690161788142947800063626378, 5.79280058389726227413694622500, 8.403881803960862713021142643491, 9.385977383994689167093637818319, 10.33517335300376506811932269648, 11.60226593514410812409214860360, 12.50070633752654277509273000995