Properties

Label 2-84-1.1-c7-0-0
Degree $2$
Conductor $84$
Sign $1$
Analytic cond. $26.2403$
Root an. cond. $5.12253$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s − 230.·5-s + 343·7-s + 729·9-s − 5.02e3·11-s − 1.37e4·13-s + 6.22e3·15-s + 3.24e4·17-s + 9.65e3·19-s − 9.26e3·21-s + 3.20e4·23-s − 2.50e4·25-s − 1.96e4·27-s + 1.03e5·29-s + 2.41e5·31-s + 1.35e5·33-s − 7.90e4·35-s − 1.27e5·37-s + 3.71e5·39-s + 6.07e5·41-s + 4.43e5·43-s − 1.67e5·45-s + 6.91e5·47-s + 1.17e5·49-s − 8.76e5·51-s + 6.72e5·53-s + 1.15e6·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.824·5-s + 0.377·7-s + 0.333·9-s − 1.13·11-s − 1.73·13-s + 0.475·15-s + 1.60·17-s + 0.322·19-s − 0.218·21-s + 0.548·23-s − 0.320·25-s − 0.192·27-s + 0.789·29-s + 1.45·31-s + 0.657·33-s − 0.311·35-s − 0.412·37-s + 1.00·39-s + 1.37·41-s + 0.851·43-s − 0.274·45-s + 0.971·47-s + 0.142·49-s − 0.925·51-s + 0.620·53-s + 0.938·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(84\)    =    \(2^{2} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(26.2403\)
Root analytic conductor: \(5.12253\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 84,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.075219392\)
\(L(\frac12)\) \(\approx\) \(1.075219392\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 27T \)
7 \( 1 - 343T \)
good5 \( 1 + 230.T + 7.81e4T^{2} \)
11 \( 1 + 5.02e3T + 1.94e7T^{2} \)
13 \( 1 + 1.37e4T + 6.27e7T^{2} \)
17 \( 1 - 3.24e4T + 4.10e8T^{2} \)
19 \( 1 - 9.65e3T + 8.93e8T^{2} \)
23 \( 1 - 3.20e4T + 3.40e9T^{2} \)
29 \( 1 - 1.03e5T + 1.72e10T^{2} \)
31 \( 1 - 2.41e5T + 2.75e10T^{2} \)
37 \( 1 + 1.27e5T + 9.49e10T^{2} \)
41 \( 1 - 6.07e5T + 1.94e11T^{2} \)
43 \( 1 - 4.43e5T + 2.71e11T^{2} \)
47 \( 1 - 6.91e5T + 5.06e11T^{2} \)
53 \( 1 - 6.72e5T + 1.17e12T^{2} \)
59 \( 1 + 2.58e6T + 2.48e12T^{2} \)
61 \( 1 - 1.53e6T + 3.14e12T^{2} \)
67 \( 1 + 4.20e6T + 6.06e12T^{2} \)
71 \( 1 - 1.51e6T + 9.09e12T^{2} \)
73 \( 1 - 5.47e6T + 1.10e13T^{2} \)
79 \( 1 + 6.75e6T + 1.92e13T^{2} \)
83 \( 1 - 8.36e6T + 2.71e13T^{2} \)
89 \( 1 + 5.17e6T + 4.42e13T^{2} \)
97 \( 1 + 1.06e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.41572301081568519032734679827, −11.98280634167297158135393728015, −10.69411363917267662296796304112, −9.759871594598183547888901563070, −7.957714055616341217747331968084, −7.34609027537248213398591864923, −5.53290838544673194859807209315, −4.54542822684898988517015776932, −2.76767638564978787478410188387, −0.67960444434266820959569190865, 0.67960444434266820959569190865, 2.76767638564978787478410188387, 4.54542822684898988517015776932, 5.53290838544673194859807209315, 7.34609027537248213398591864923, 7.957714055616341217747331968084, 9.759871594598183547888901563070, 10.69411363917267662296796304112, 11.98280634167297158135393728015, 12.41572301081568519032734679827

Graph of the $Z$-function along the critical line