L(s) = 1 | − 3-s + 7-s + 9-s − 4·11-s − 2·13-s − 2·17-s + 2·19-s − 21-s − 6·23-s − 27-s + 6·29-s − 6·31-s + 4·33-s + 4·37-s + 2·39-s − 4·43-s + 4·47-s + 49-s + 2·51-s + 2·53-s − 2·57-s − 4·59-s − 2·61-s + 63-s − 12·67-s + 6·69-s + 8·71-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.377·7-s + 1/3·9-s − 1.20·11-s − 0.554·13-s − 0.485·17-s + 0.458·19-s − 0.218·21-s − 1.25·23-s − 0.192·27-s + 1.11·29-s − 1.07·31-s + 0.696·33-s + 0.657·37-s + 0.320·39-s − 0.609·43-s + 0.583·47-s + 1/7·49-s + 0.280·51-s + 0.274·53-s − 0.264·57-s − 0.520·59-s − 0.256·61-s + 0.125·63-s − 1.46·67-s + 0.722·69-s + 0.949·71-s + ⋯ |
Λ(s)=(=(8400s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8400s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.050898657 |
L(21) |
≈ |
1.050898657 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1 |
| 7 | 1−T |
good | 11 | 1+4T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+6T+pT2 |
| 37 | 1−4T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1+14T+pT2 |
| 79 | 1+16T+pT2 |
| 83 | 1−16T+pT2 |
| 89 | 1−16T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.56279277731945914272912400131, −7.35048406859826782523602071262, −6.23306806472184064493666247970, −5.78489214933156331783686829675, −4.89697965516847316969092004032, −4.57114548767155620108541318156, −3.50101908861801476802011770116, −2.55181171513341671521163672538, −1.79768067173493383952295287520, −0.50273118136580517687805037565,
0.50273118136580517687805037565, 1.79768067173493383952295287520, 2.55181171513341671521163672538, 3.50101908861801476802011770116, 4.57114548767155620108541318156, 4.89697965516847316969092004032, 5.78489214933156331783686829675, 6.23306806472184064493666247970, 7.35048406859826782523602071262, 7.56279277731945914272912400131