Properties

Label 2-8400-1.1-c1-0-78
Degree $2$
Conductor $8400$
Sign $-1$
Analytic cond. $67.0743$
Root an. cond. $8.18989$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 3·11-s − 2·17-s + 8·19-s − 21-s − 23-s − 27-s − 9·29-s + 6·31-s + 3·33-s − 3·37-s − 8·41-s + 7·43-s − 8·47-s + 49-s + 2·51-s − 2·53-s − 8·57-s + 12·61-s + 63-s + 67-s + 69-s − 3·71-s − 2·73-s − 3·77-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.904·11-s − 0.485·17-s + 1.83·19-s − 0.218·21-s − 0.208·23-s − 0.192·27-s − 1.67·29-s + 1.07·31-s + 0.522·33-s − 0.493·37-s − 1.24·41-s + 1.06·43-s − 1.16·47-s + 1/7·49-s + 0.280·51-s − 0.274·53-s − 1.05·57-s + 1.53·61-s + 0.125·63-s + 0.122·67-s + 0.120·69-s − 0.356·71-s − 0.234·73-s − 0.341·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8400\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(67.0743\)
Root analytic conductor: \(8.18989\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + 9 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 12 T + p T^{2} \)
67 \( 1 - T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.44974800818356008271444586557, −6.83264197806978042684580387229, −5.94306704479859832114389078068, −5.28820867636925972612572097648, −4.89908806771410433648024195261, −3.91605610478166170305428853570, −3.10440386692238502677243360582, −2.14947588932351565432975210898, −1.18281806632643958260268409135, 0, 1.18281806632643958260268409135, 2.14947588932351565432975210898, 3.10440386692238502677243360582, 3.91605610478166170305428853570, 4.89908806771410433648024195261, 5.28820867636925972612572097648, 5.94306704479859832114389078068, 6.83264197806978042684580387229, 7.44974800818356008271444586557

Graph of the $Z$-function along the critical line