L(s) = 1 | − 2.08i·2-s + (1.94 − 1.94i)3-s − 2.35·4-s + (−2.22 + 0.194i)5-s + (−4.06 − 4.06i)6-s − 2.91·7-s + 0.750i·8-s − 4.59i·9-s + (0.405 + 4.65i)10-s + (−0.0186 + 0.0186i)11-s + (−4.59 + 4.59i)12-s + 6.07i·14-s + (−3.96 + 4.71i)15-s − 3.15·16-s + (−2.02 + 2.02i)17-s − 9.58·18-s + ⋯ |
L(s) = 1 | − 1.47i·2-s + (1.12 − 1.12i)3-s − 1.17·4-s + (−0.996 + 0.0869i)5-s + (−1.66 − 1.66i)6-s − 1.10·7-s + 0.265i·8-s − 1.53i·9-s + (0.128 + 1.47i)10-s + (−0.00561 + 0.00561i)11-s + (−1.32 + 1.32i)12-s + 1.62i·14-s + (−1.02 + 1.21i)15-s − 0.787·16-s + (−0.491 + 0.491i)17-s − 2.26·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0655 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0655 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.732269 + 0.781929i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.732269 + 0.781929i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.22 - 0.194i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 2.08iT - 2T^{2} \) |
| 3 | \( 1 + (-1.94 + 1.94i)T - 3iT^{2} \) |
| 7 | \( 1 + 2.91T + 7T^{2} \) |
| 11 | \( 1 + (0.0186 - 0.0186i)T - 11iT^{2} \) |
| 17 | \( 1 + (2.02 - 2.02i)T - 17iT^{2} \) |
| 19 | \( 1 + (-3.38 + 3.38i)T - 19iT^{2} \) |
| 23 | \( 1 + (0.262 + 0.262i)T + 23iT^{2} \) |
| 29 | \( 1 + 4.18iT - 29T^{2} \) |
| 31 | \( 1 + (-0.835 - 0.835i)T + 31iT^{2} \) |
| 37 | \( 1 + 6.45T + 37T^{2} \) |
| 41 | \( 1 + (-5.54 - 5.54i)T + 41iT^{2} \) |
| 43 | \( 1 + (4.90 + 4.90i)T + 43iT^{2} \) |
| 47 | \( 1 + 0.833T + 47T^{2} \) |
| 53 | \( 1 + (-0.902 + 0.902i)T - 53iT^{2} \) |
| 59 | \( 1 + (1.05 + 1.05i)T + 59iT^{2} \) |
| 61 | \( 1 + 10.7T + 61T^{2} \) |
| 67 | \( 1 + 12.3iT - 67T^{2} \) |
| 71 | \( 1 + (2.61 + 2.61i)T + 71iT^{2} \) |
| 73 | \( 1 + 15.0iT - 73T^{2} \) |
| 79 | \( 1 + 4.25iT - 79T^{2} \) |
| 83 | \( 1 + 1.31T + 83T^{2} \) |
| 89 | \( 1 + (-2.36 - 2.36i)T + 89iT^{2} \) |
| 97 | \( 1 - 0.405iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.496757245427727631920213794136, −8.914426104480271333892641542578, −8.008731967351940467460694177640, −7.12380136372620376527387899503, −6.43887890974344290031804953918, −4.49606352620722985693977297314, −3.34579974555909384345311007536, −3.02513249673087341552977397984, −1.85493424230736158535342335382, −0.44183483362029277417777039296,
2.87857128694904635855283212973, 3.71994041221867545064884238097, 4.56922681398246856320456130132, 5.53962773450378259929843590587, 6.75741485986178006345558998782, 7.46731785990779861463745145952, 8.290287984373353800888332790993, 8.932854343879080968375020325519, 9.565677910872012147001581954389, 10.45225572018238862300459105167