L(s) = 1 | − 2.08i·2-s + (1.94 − 1.94i)3-s − 2.35·4-s + (−2.22 + 0.194i)5-s + (−4.06 − 4.06i)6-s − 2.91·7-s + 0.750i·8-s − 4.59i·9-s + (0.405 + 4.65i)10-s + (−0.0186 + 0.0186i)11-s + (−4.59 + 4.59i)12-s + 6.07i·14-s + (−3.96 + 4.71i)15-s − 3.15·16-s + (−2.02 + 2.02i)17-s − 9.58·18-s + ⋯ |
L(s) = 1 | − 1.47i·2-s + (1.12 − 1.12i)3-s − 1.17·4-s + (−0.996 + 0.0869i)5-s + (−1.66 − 1.66i)6-s − 1.10·7-s + 0.265i·8-s − 1.53i·9-s + (0.128 + 1.47i)10-s + (−0.00561 + 0.00561i)11-s + (−1.32 + 1.32i)12-s + 1.62i·14-s + (−1.02 + 1.21i)15-s − 0.787·16-s + (−0.491 + 0.491i)17-s − 2.26·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(−0.0655−0.997i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(−0.0655−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
−0.0655−0.997i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(437,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), −0.0655−0.997i)
|
Particular Values
L(1) |
≈ |
0.732269+0.781929i |
L(21) |
≈ |
0.732269+0.781929i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.22−0.194i)T |
| 13 | 1 |
good | 2 | 1+2.08iT−2T2 |
| 3 | 1+(−1.94+1.94i)T−3iT2 |
| 7 | 1+2.91T+7T2 |
| 11 | 1+(0.0186−0.0186i)T−11iT2 |
| 17 | 1+(2.02−2.02i)T−17iT2 |
| 19 | 1+(−3.38+3.38i)T−19iT2 |
| 23 | 1+(0.262+0.262i)T+23iT2 |
| 29 | 1+4.18iT−29T2 |
| 31 | 1+(−0.835−0.835i)T+31iT2 |
| 37 | 1+6.45T+37T2 |
| 41 | 1+(−5.54−5.54i)T+41iT2 |
| 43 | 1+(4.90+4.90i)T+43iT2 |
| 47 | 1+0.833T+47T2 |
| 53 | 1+(−0.902+0.902i)T−53iT2 |
| 59 | 1+(1.05+1.05i)T+59iT2 |
| 61 | 1+10.7T+61T2 |
| 67 | 1+12.3iT−67T2 |
| 71 | 1+(2.61+2.61i)T+71iT2 |
| 73 | 1+15.0iT−73T2 |
| 79 | 1+4.25iT−79T2 |
| 83 | 1+1.31T+83T2 |
| 89 | 1+(−2.36−2.36i)T+89iT2 |
| 97 | 1−0.405iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.496757245427727631920213794136, −8.914426104480271333892641542578, −8.008731967351940467460694177640, −7.12380136372620376527387899503, −6.43887890974344290031804953918, −4.49606352620722985693977297314, −3.34579974555909384345311007536, −3.02513249673087341552977397984, −1.85493424230736158535342335382, −0.44183483362029277417777039296,
2.87857128694904635855283212973, 3.71994041221867545064884238097, 4.56922681398246856320456130132, 5.53962773450378259929843590587, 6.75741485986178006345558998782, 7.46731785990779861463745145952, 8.290287984373353800888332790993, 8.932854343879080968375020325519, 9.565677910872012147001581954389, 10.45225572018238862300459105167