L(s) = 1 | + 0.131i·2-s + (−0.243 + 0.243i)3-s + 1.98·4-s + (−2.08 − 0.813i)5-s + (−0.0319 − 0.0319i)6-s + 2.78·7-s + 0.522i·8-s + 2.88i·9-s + (0.106 − 0.273i)10-s + (−2.86 + 2.86i)11-s + (−0.482 + 0.482i)12-s + 0.365i·14-s + (0.704 − 0.308i)15-s + 3.89·16-s + (−1.71 + 1.71i)17-s − 0.378·18-s + ⋯ |
L(s) = 1 | + 0.0928i·2-s + (−0.140 + 0.140i)3-s + 0.991·4-s + (−0.931 − 0.363i)5-s + (−0.0130 − 0.0130i)6-s + 1.05·7-s + 0.184i·8-s + 0.960i·9-s + (0.0337 − 0.0864i)10-s + (−0.864 + 0.864i)11-s + (−0.139 + 0.139i)12-s + 0.0976i·14-s + (0.181 − 0.0797i)15-s + 0.974·16-s + (−0.415 + 0.415i)17-s − 0.0891·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.383 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.383 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34481 + 0.897649i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34481 + 0.897649i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.08 + 0.813i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 0.131iT - 2T^{2} \) |
| 3 | \( 1 + (0.243 - 0.243i)T - 3iT^{2} \) |
| 7 | \( 1 - 2.78T + 7T^{2} \) |
| 11 | \( 1 + (2.86 - 2.86i)T - 11iT^{2} \) |
| 17 | \( 1 + (1.71 - 1.71i)T - 17iT^{2} \) |
| 19 | \( 1 + (1.34 - 1.34i)T - 19iT^{2} \) |
| 23 | \( 1 + (-5.64 - 5.64i)T + 23iT^{2} \) |
| 29 | \( 1 + 4.57iT - 29T^{2} \) |
| 31 | \( 1 + (3.87 + 3.87i)T + 31iT^{2} \) |
| 37 | \( 1 - 7.01T + 37T^{2} \) |
| 41 | \( 1 + (-4.54 - 4.54i)T + 41iT^{2} \) |
| 43 | \( 1 + (-4.57 - 4.57i)T + 43iT^{2} \) |
| 47 | \( 1 - 0.512T + 47T^{2} \) |
| 53 | \( 1 + (1.32 - 1.32i)T - 53iT^{2} \) |
| 59 | \( 1 + (-1.85 - 1.85i)T + 59iT^{2} \) |
| 61 | \( 1 + 1.28T + 61T^{2} \) |
| 67 | \( 1 + 3.61iT - 67T^{2} \) |
| 71 | \( 1 + (4.54 + 4.54i)T + 71iT^{2} \) |
| 73 | \( 1 - 9.93iT - 73T^{2} \) |
| 79 | \( 1 + 8.37iT - 79T^{2} \) |
| 83 | \( 1 + 3.17T + 83T^{2} \) |
| 89 | \( 1 + (4.40 + 4.40i)T + 89iT^{2} \) |
| 97 | \( 1 - 11.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71879285173691428314109314364, −9.591797208353423134906707584190, −8.273448355347056787999059571557, −7.70328811411742297133289807586, −7.32449758366342254257227136998, −5.87312361146268882647081836295, −4.96339269911374488579681077609, −4.22850449951973310771153010657, −2.67879317249199878433806318932, −1.61692529841535266667236747447,
0.824574418863889243187708578200, 2.51483757303268521519839197403, 3.38474056406518403078066307100, 4.62299766618506117821146338125, 5.73469106416047515754200568845, 6.80127565349326840929840607186, 7.33218642810825614187829507748, 8.271637686287766976609188251552, 8.967666307238778093806198048885, 10.49546598175237808356316417431