L(s) = 1 | − 0.274i·2-s + (1.67 + 1.67i)3-s + 1.92·4-s + (1.45 − 1.69i)5-s + (0.459 − 0.459i)6-s + 0.386·7-s − 1.07i·8-s + 2.58i·9-s + (−0.466 − 0.399i)10-s + (−3.08 − 3.08i)11-s + (3.21 + 3.21i)12-s − 0.106i·14-s + (5.26 − 0.409i)15-s + 3.55·16-s + (−1.39 − 1.39i)17-s + 0.710·18-s + ⋯ |
L(s) = 1 | − 0.194i·2-s + (0.964 + 0.964i)3-s + 0.962·4-s + (0.650 − 0.759i)5-s + (0.187 − 0.187i)6-s + 0.145·7-s − 0.381i·8-s + 0.861i·9-s + (−0.147 − 0.126i)10-s + (−0.929 − 0.929i)11-s + (0.928 + 0.928i)12-s − 0.0283i·14-s + (1.36 − 0.105i)15-s + 0.888·16-s + (−0.338 − 0.338i)17-s + 0.167·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(0.999−0.0153i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(0.999−0.0153i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
0.999−0.0153i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(408,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), 0.999−0.0153i)
|
Particular Values
L(1) |
≈ |
2.88989+0.0221645i |
L(21) |
≈ |
2.88989+0.0221645i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−1.45+1.69i)T |
| 13 | 1 |
good | 2 | 1+0.274iT−2T2 |
| 3 | 1+(−1.67−1.67i)T+3iT2 |
| 7 | 1−0.386T+7T2 |
| 11 | 1+(3.08+3.08i)T+11iT2 |
| 17 | 1+(1.39+1.39i)T+17iT2 |
| 19 | 1+(−3.54−3.54i)T+19iT2 |
| 23 | 1+(0.235−0.235i)T−23iT2 |
| 29 | 1−8.16iT−29T2 |
| 31 | 1+(2.54−2.54i)T−31iT2 |
| 37 | 1−4.82T+37T2 |
| 41 | 1+(3.29−3.29i)T−41iT2 |
| 43 | 1+(4.82−4.82i)T−43iT2 |
| 47 | 1+9.83T+47T2 |
| 53 | 1+(7.17+7.17i)T+53iT2 |
| 59 | 1+(1.71−1.71i)T−59iT2 |
| 61 | 1−10.6T+61T2 |
| 67 | 1−6.37iT−67T2 |
| 71 | 1+(3.07−3.07i)T−71iT2 |
| 73 | 1−6.08iT−73T2 |
| 79 | 1−3.34iT−79T2 |
| 83 | 1−5.18T+83T2 |
| 89 | 1+(3.53−3.53i)T−89iT2 |
| 97 | 1+14.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.994063071058615263260426453591, −9.577333865967520718191297516225, −8.453712234126871896950602116560, −8.053752333057241209463219276928, −6.73028041454928267556159711232, −5.61614223267892496817075050067, −4.85921910199126947393599984166, −3.46226279255571799327655221384, −2.82585707681767409687974846974, −1.52816204998040045852550528471,
1.82649452496407735372914830778, 2.38344948395518168897623577202, 3.23446939484160125320823040752, 5.04117589408957876972175099942, 6.19851799440128426012392063050, 6.90538788343341516028088137002, 7.60757875466253561027510628860, 8.077429191262691468732138574962, 9.372440719181474994592560724719, 10.15121760370021609588218053593