L(s) = 1 | − 0.274i·2-s + (1.67 + 1.67i)3-s + 1.92·4-s + (1.45 − 1.69i)5-s + (0.459 − 0.459i)6-s + 0.386·7-s − 1.07i·8-s + 2.58i·9-s + (−0.466 − 0.399i)10-s + (−3.08 − 3.08i)11-s + (3.21 + 3.21i)12-s − 0.106i·14-s + (5.26 − 0.409i)15-s + 3.55·16-s + (−1.39 − 1.39i)17-s + 0.710·18-s + ⋯ |
L(s) = 1 | − 0.194i·2-s + (0.964 + 0.964i)3-s + 0.962·4-s + (0.650 − 0.759i)5-s + (0.187 − 0.187i)6-s + 0.145·7-s − 0.381i·8-s + 0.861i·9-s + (−0.147 − 0.126i)10-s + (−0.929 − 0.929i)11-s + (0.928 + 0.928i)12-s − 0.0283i·14-s + (1.36 − 0.105i)15-s + 0.888·16-s + (−0.338 − 0.338i)17-s + 0.167·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0153i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0153i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.88989 + 0.0221645i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.88989 + 0.0221645i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1.45 + 1.69i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 0.274iT - 2T^{2} \) |
| 3 | \( 1 + (-1.67 - 1.67i)T + 3iT^{2} \) |
| 7 | \( 1 - 0.386T + 7T^{2} \) |
| 11 | \( 1 + (3.08 + 3.08i)T + 11iT^{2} \) |
| 17 | \( 1 + (1.39 + 1.39i)T + 17iT^{2} \) |
| 19 | \( 1 + (-3.54 - 3.54i)T + 19iT^{2} \) |
| 23 | \( 1 + (0.235 - 0.235i)T - 23iT^{2} \) |
| 29 | \( 1 - 8.16iT - 29T^{2} \) |
| 31 | \( 1 + (2.54 - 2.54i)T - 31iT^{2} \) |
| 37 | \( 1 - 4.82T + 37T^{2} \) |
| 41 | \( 1 + (3.29 - 3.29i)T - 41iT^{2} \) |
| 43 | \( 1 + (4.82 - 4.82i)T - 43iT^{2} \) |
| 47 | \( 1 + 9.83T + 47T^{2} \) |
| 53 | \( 1 + (7.17 + 7.17i)T + 53iT^{2} \) |
| 59 | \( 1 + (1.71 - 1.71i)T - 59iT^{2} \) |
| 61 | \( 1 - 10.6T + 61T^{2} \) |
| 67 | \( 1 - 6.37iT - 67T^{2} \) |
| 71 | \( 1 + (3.07 - 3.07i)T - 71iT^{2} \) |
| 73 | \( 1 - 6.08iT - 73T^{2} \) |
| 79 | \( 1 - 3.34iT - 79T^{2} \) |
| 83 | \( 1 - 5.18T + 83T^{2} \) |
| 89 | \( 1 + (3.53 - 3.53i)T - 89iT^{2} \) |
| 97 | \( 1 + 14.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.994063071058615263260426453591, −9.577333865967520718191297516225, −8.453712234126871896950602116560, −8.053752333057241209463219276928, −6.73028041454928267556159711232, −5.61614223267892496817075050067, −4.85921910199126947393599984166, −3.46226279255571799327655221384, −2.82585707681767409687974846974, −1.52816204998040045852550528471,
1.82649452496407735372914830778, 2.38344948395518168897623577202, 3.23446939484160125320823040752, 5.04117589408957876972175099942, 6.19851799440128426012392063050, 6.90538788343341516028088137002, 7.60757875466253561027510628860, 8.077429191262691468732138574962, 9.372440719181474994592560724719, 10.15121760370021609588218053593