L(s) = 1 | + (−0.246 + 0.427i)2-s + (−0.243 − 0.908i)3-s + (0.878 + 1.52i)4-s + (−2.21 + 0.284i)5-s + (0.448 + 0.120i)6-s + (−3.18 + 1.83i)7-s − 1.85·8-s + (1.83 − 1.05i)9-s + (0.426 − 1.01i)10-s + (0.664 − 0.177i)11-s + (1.16 − 1.16i)12-s − 1.81i·14-s + (0.798 + 1.94i)15-s + (−1.29 + 2.24i)16-s + (−2.29 − 0.614i)17-s + 1.04i·18-s + ⋯ |
L(s) = 1 | + (−0.174 + 0.302i)2-s + (−0.140 − 0.524i)3-s + (0.439 + 0.760i)4-s + (−0.991 + 0.127i)5-s + (0.183 + 0.0490i)6-s + (−1.20 + 0.694i)7-s − 0.655·8-s + (0.610 − 0.352i)9-s + (0.134 − 0.322i)10-s + (0.200 − 0.0536i)11-s + (0.337 − 0.337i)12-s − 0.485i·14-s + (0.206 + 0.502i)15-s + (−0.324 + 0.562i)16-s + (−0.556 − 0.149i)17-s + 0.246i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.333 + 0.942i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.333 + 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.192169 - 0.271900i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.192169 - 0.271900i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.21 - 0.284i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.246 - 0.427i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.243 + 0.908i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (3.18 - 1.83i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.664 + 0.177i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (2.29 + 0.614i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.41 + 5.29i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (1.30 - 0.350i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (8.24 + 4.75i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.81 + 4.81i)T - 31iT^{2} \) |
| 37 | \( 1 + (1.58 + 0.917i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.143 - 0.534i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-0.560 + 2.09i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 3.80iT - 47T^{2} \) |
| 53 | \( 1 + (2.47 - 2.47i)T - 53iT^{2} \) |
| 59 | \( 1 + (10.0 + 2.69i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (3.09 + 5.36i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.12 - 10.6i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.47 - 1.73i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 - 3.37T + 73T^{2} \) |
| 79 | \( 1 - 3.12iT - 79T^{2} \) |
| 83 | \( 1 + 2.13iT - 83T^{2} \) |
| 89 | \( 1 + (-0.874 - 3.26i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (3.53 + 6.12i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.640840637464054994572142916598, −9.052831113282643803220244133445, −8.050145642323936342704445287019, −7.25313428617894357153381029036, −6.70798643524016893761895783413, −5.96034902034883923335286917610, −4.29141484449157275650790272621, −3.39294350653949704448134200566, −2.41671568761304740805151693932, −0.17421643556788183511488700842,
1.46160846735637784424877193545, 3.20929261794699247055866733577, 3.98849099222660148341990291921, 5.01527158154313386030751701369, 6.20811918634472345703347149208, 6.99697699062574340610920009672, 7.78672505957026000775408970782, 9.112624090862479994726863979768, 9.751298061257776683999260502890, 10.56620972087949099081357707931