L(s) = 1 | + (−0.246 + 0.427i)2-s + (−0.243 − 0.908i)3-s + (0.878 + 1.52i)4-s + (−2.21 + 0.284i)5-s + (0.448 + 0.120i)6-s + (−3.18 + 1.83i)7-s − 1.85·8-s + (1.83 − 1.05i)9-s + (0.426 − 1.01i)10-s + (0.664 − 0.177i)11-s + (1.16 − 1.16i)12-s − 1.81i·14-s + (0.798 + 1.94i)15-s + (−1.29 + 2.24i)16-s + (−2.29 − 0.614i)17-s + 1.04i·18-s + ⋯ |
L(s) = 1 | + (−0.174 + 0.302i)2-s + (−0.140 − 0.524i)3-s + (0.439 + 0.760i)4-s + (−0.991 + 0.127i)5-s + (0.183 + 0.0490i)6-s + (−1.20 + 0.694i)7-s − 0.655·8-s + (0.610 − 0.352i)9-s + (0.134 − 0.322i)10-s + (0.200 − 0.0536i)11-s + (0.337 − 0.337i)12-s − 0.485i·14-s + (0.206 + 0.502i)15-s + (−0.324 + 0.562i)16-s + (−0.556 − 0.149i)17-s + 0.246i·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(−0.333+0.942i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(−0.333+0.942i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
−0.333+0.942i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(357,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), −0.333+0.942i)
|
Particular Values
L(1) |
≈ |
0.192169−0.271900i |
L(21) |
≈ |
0.192169−0.271900i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.21−0.284i)T |
| 13 | 1 |
good | 2 | 1+(0.246−0.427i)T+(−1−1.73i)T2 |
| 3 | 1+(0.243+0.908i)T+(−2.59+1.5i)T2 |
| 7 | 1+(3.18−1.83i)T+(3.5−6.06i)T2 |
| 11 | 1+(−0.664+0.177i)T+(9.52−5.5i)T2 |
| 17 | 1+(2.29+0.614i)T+(14.7+8.5i)T2 |
| 19 | 1+(−1.41+5.29i)T+(−16.4−9.5i)T2 |
| 23 | 1+(1.30−0.350i)T+(19.9−11.5i)T2 |
| 29 | 1+(8.24+4.75i)T+(14.5+25.1i)T2 |
| 31 | 1+(−4.81+4.81i)T−31iT2 |
| 37 | 1+(1.58+0.917i)T+(18.5+32.0i)T2 |
| 41 | 1+(−0.143−0.534i)T+(−35.5+20.5i)T2 |
| 43 | 1+(−0.560+2.09i)T+(−37.2−21.5i)T2 |
| 47 | 1+3.80iT−47T2 |
| 53 | 1+(2.47−2.47i)T−53iT2 |
| 59 | 1+(10.0+2.69i)T+(51.0+29.5i)T2 |
| 61 | 1+(3.09+5.36i)T+(−30.5+52.8i)T2 |
| 67 | 1+(6.12−10.6i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−6.47−1.73i)T+(61.4+35.5i)T2 |
| 73 | 1−3.37T+73T2 |
| 79 | 1−3.12iT−79T2 |
| 83 | 1+2.13iT−83T2 |
| 89 | 1+(−0.874−3.26i)T+(−77.0+44.5i)T2 |
| 97 | 1+(3.53+6.12i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.640840637464054994572142916598, −9.052831113282643803220244133445, −8.050145642323936342704445287019, −7.25313428617894357153381029036, −6.70798643524016893761895783413, −5.96034902034883923335286917610, −4.29141484449157275650790272621, −3.39294350653949704448134200566, −2.41671568761304740805151693932, −0.17421643556788183511488700842,
1.46160846735637784424877193545, 3.20929261794699247055866733577, 3.98849099222660148341990291921, 5.01527158154313386030751701369, 6.20811918634472345703347149208, 6.99697699062574340610920009672, 7.78672505957026000775408970782, 9.112624090862479994726863979768, 9.751298061257776683999260502890, 10.56620972087949099081357707931