L(s) = 1 | + (1.04 − 1.80i)2-s + (−2.66 + 0.713i)3-s + (−1.17 − 2.04i)4-s + (0.194 − 2.22i)5-s + (−1.48 + 5.55i)6-s + (2.52 − 1.45i)7-s − 0.750·8-s + (3.97 − 2.29i)9-s + (−3.82 − 2.67i)10-s + (−0.00681 − 0.0254i)11-s + (4.59 + 4.59i)12-s − 6.07i·14-s + (1.07 + 6.06i)15-s + (1.57 − 2.72i)16-s + (0.741 − 2.76i)17-s − 9.58i·18-s + ⋯ |
L(s) = 1 | + (0.738 − 1.27i)2-s + (−1.53 + 0.411i)3-s + (−0.589 − 1.02i)4-s + (0.0869 − 0.996i)5-s + (−0.607 + 2.26i)6-s + (0.952 − 0.550i)7-s − 0.265·8-s + (1.32 − 0.765i)9-s + (−1.20 − 0.846i)10-s + (−0.00205 − 0.00767i)11-s + (1.32 + 1.32i)12-s − 1.62i·14-s + (0.276 + 1.56i)15-s + (0.393 − 0.682i)16-s + (0.179 − 0.671i)17-s − 2.26i·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(−0.982+0.188i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(−0.982+0.188i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
−0.982+0.188i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(488,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), −0.982+0.188i)
|
Particular Values
L(1) |
≈ |
0.139550−1.46593i |
L(21) |
≈ |
0.139550−1.46593i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.194+2.22i)T |
| 13 | 1 |
good | 2 | 1+(−1.04+1.80i)T+(−1−1.73i)T2 |
| 3 | 1+(2.66−0.713i)T+(2.59−1.5i)T2 |
| 7 | 1+(−2.52+1.45i)T+(3.5−6.06i)T2 |
| 11 | 1+(0.00681+0.0254i)T+(−9.52+5.5i)T2 |
| 17 | 1+(−0.741+2.76i)T+(−14.7−8.5i)T2 |
| 19 | 1+(−4.62−1.23i)T+(16.4+9.5i)T2 |
| 23 | 1+(−0.0961−0.358i)T+(−19.9+11.5i)T2 |
| 29 | 1+(3.62+2.09i)T+(14.5+25.1i)T2 |
| 31 | 1+(−0.835−0.835i)T+31iT2 |
| 37 | 1+(5.58+3.22i)T+(18.5+32.0i)T2 |
| 41 | 1+(7.57−2.02i)T+(35.5−20.5i)T2 |
| 43 | 1+(6.69+1.79i)T+(37.2+21.5i)T2 |
| 47 | 1−0.833iT−47T2 |
| 53 | 1+(−0.902−0.902i)T+53iT2 |
| 59 | 1+(−0.387+1.44i)T+(−51.0−29.5i)T2 |
| 61 | 1+(−5.35−9.26i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.15+10.6i)T+(−33.5−58.0i)T2 |
| 71 | 1+(0.957−3.57i)T+(−61.4−35.5i)T2 |
| 73 | 1−15.0T+73T2 |
| 79 | 1−4.25iT−79T2 |
| 83 | 1+1.31iT−83T2 |
| 89 | 1+(−3.23+0.867i)T+(77.0−44.5i)T2 |
| 97 | 1+(0.202+0.351i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12396152588068723184453496031, −9.525129233199856135317728758724, −8.134397019117011008996755886374, −7.07990822053778686742934440830, −5.59381903757429464480084599084, −5.11861677262200879823353539014, −4.52513655629024366514929673503, −3.59098750789772594676119014552, −1.72583650053081802447716346691, −0.74365105386565660617043900097,
1.72457389597469940919036119248, 3.62620243539026478638941094185, 5.08526131226655922350530692269, 5.30842565545677218982405132661, 6.28014246801258990863146495117, 6.83200386868537067915819513993, 7.57582617657309938835024766050, 8.427859721609985518358514504090, 9.999101447010529260516105842799, 10.82858445715184854880469638611