L(s) = 1 | + (0.246 + 0.427i)2-s + (0.908 + 0.243i)3-s + (0.878 − 1.52i)4-s + (2.21 − 0.284i)5-s + (0.120 + 0.448i)6-s + (−3.18 − 1.83i)7-s + 1.85·8-s + (−1.83 − 1.05i)9-s + (0.669 + 0.878i)10-s + (0.177 − 0.664i)11-s + (1.16 − 1.16i)12-s − 1.81i·14-s + (2.08 + 0.281i)15-s + (−1.29 − 2.24i)16-s + (0.614 + 2.29i)17-s − 1.04i·18-s + ⋯ |
L(s) = 1 | + (0.174 + 0.302i)2-s + (0.524 + 0.140i)3-s + (0.439 − 0.760i)4-s + (0.991 − 0.127i)5-s + (0.0490 + 0.183i)6-s + (−1.20 − 0.694i)7-s + 0.655·8-s + (−0.610 − 0.352i)9-s + (0.211 + 0.277i)10-s + (0.0536 − 0.200i)11-s + (0.337 − 0.337i)12-s − 0.485i·14-s + (0.538 + 0.0726i)15-s + (−0.324 − 0.562i)16-s + (0.149 + 0.556i)17-s − 0.246i·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(0.659+0.751i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(0.659+0.751i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
0.659+0.751i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(587,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), 0.659+0.751i)
|
Particular Values
L(1) |
≈ |
2.09241−0.948340i |
L(21) |
≈ |
2.09241−0.948340i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.21+0.284i)T |
| 13 | 1 |
good | 2 | 1+(−0.246−0.427i)T+(−1+1.73i)T2 |
| 3 | 1+(−0.908−0.243i)T+(2.59+1.5i)T2 |
| 7 | 1+(3.18+1.83i)T+(3.5+6.06i)T2 |
| 11 | 1+(−0.177+0.664i)T+(−9.52−5.5i)T2 |
| 17 | 1+(−0.614−2.29i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−5.29+1.41i)T+(16.4−9.5i)T2 |
| 23 | 1+(−0.350+1.30i)T+(−19.9−11.5i)T2 |
| 29 | 1+(−8.24+4.75i)T+(14.5−25.1i)T2 |
| 31 | 1+(4.81−4.81i)T−31iT2 |
| 37 | 1+(1.58−0.917i)T+(18.5−32.0i)T2 |
| 41 | 1+(−0.534−0.143i)T+(35.5+20.5i)T2 |
| 43 | 1+(2.09−0.560i)T+(37.2−21.5i)T2 |
| 47 | 1−3.80iT−47T2 |
| 53 | 1+(2.47−2.47i)T−53iT2 |
| 59 | 1+(2.69+10.0i)T+(−51.0+29.5i)T2 |
| 61 | 1+(3.09−5.36i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.12−10.6i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−1.73−6.47i)T+(−61.4+35.5i)T2 |
| 73 | 1+3.37T+73T2 |
| 79 | 1−3.12iT−79T2 |
| 83 | 1−2.13iT−83T2 |
| 89 | 1+(−3.26−0.874i)T+(77.0+44.5i)T2 |
| 97 | 1+(−3.53+6.12i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.955285949746645028373796542079, −9.461384011030403901841137861844, −8.535089679118406133972174784342, −7.27012573786140360814496302296, −6.42913022675565511219989367332, −5.93053406437799495310551816150, −4.89863075745007563579266592800, −3.47214347753233444809079878108, −2.56284746214491979484427029938, −1.01969916957812235343399182345,
1.93290957803353920335864744863, 2.90970569768107473376049398212, 3.33200059264854442046286386785, 5.06986644291770976462679231703, 5.99065080180027095452482020828, 6.88801478677472196352642805740, 7.72562959871180684557206864955, 8.797804974002115465450165766022, 9.397797881846258869942244118608, 10.21471997997349345648809398293