L(s) = 1 | + (0.246 + 0.427i)2-s + (0.908 + 0.243i)3-s + (0.878 − 1.52i)4-s + (2.21 − 0.284i)5-s + (0.120 + 0.448i)6-s + (−3.18 − 1.83i)7-s + 1.85·8-s + (−1.83 − 1.05i)9-s + (0.669 + 0.878i)10-s + (0.177 − 0.664i)11-s + (1.16 − 1.16i)12-s − 1.81i·14-s + (2.08 + 0.281i)15-s + (−1.29 − 2.24i)16-s + (0.614 + 2.29i)17-s − 1.04i·18-s + ⋯ |
L(s) = 1 | + (0.174 + 0.302i)2-s + (0.524 + 0.140i)3-s + (0.439 − 0.760i)4-s + (0.991 − 0.127i)5-s + (0.0490 + 0.183i)6-s + (−1.20 − 0.694i)7-s + 0.655·8-s + (−0.610 − 0.352i)9-s + (0.211 + 0.277i)10-s + (0.0536 − 0.200i)11-s + (0.337 − 0.337i)12-s − 0.485i·14-s + (0.538 + 0.0726i)15-s + (−0.324 − 0.562i)16-s + (0.149 + 0.556i)17-s − 0.246i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.659 + 0.751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.659 + 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.09241 - 0.948340i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.09241 - 0.948340i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.21 + 0.284i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.246 - 0.427i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.908 - 0.243i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (3.18 + 1.83i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.177 + 0.664i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-0.614 - 2.29i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-5.29 + 1.41i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.350 + 1.30i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-8.24 + 4.75i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.81 - 4.81i)T - 31iT^{2} \) |
| 37 | \( 1 + (1.58 - 0.917i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.534 - 0.143i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (2.09 - 0.560i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 3.80iT - 47T^{2} \) |
| 53 | \( 1 + (2.47 - 2.47i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.69 + 10.0i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (3.09 - 5.36i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.12 - 10.6i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.73 - 6.47i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 3.37T + 73T^{2} \) |
| 79 | \( 1 - 3.12iT - 79T^{2} \) |
| 83 | \( 1 - 2.13iT - 83T^{2} \) |
| 89 | \( 1 + (-3.26 - 0.874i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-3.53 + 6.12i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.955285949746645028373796542079, −9.461384011030403901841137861844, −8.535089679118406133972174784342, −7.27012573786140360814496302296, −6.42913022675565511219989367332, −5.93053406437799495310551816150, −4.89863075745007563579266592800, −3.47214347753233444809079878108, −2.56284746214491979484427029938, −1.01969916957812235343399182345,
1.93290957803353920335864744863, 2.90970569768107473376049398212, 3.33200059264854442046286386785, 5.06986644291770976462679231703, 5.99065080180027095452482020828, 6.88801478677472196352642805740, 7.72562959871180684557206864955, 8.797804974002115465450165766022, 9.397797881846258869942244118608, 10.21471997997349345648809398293