L(s) = 1 | + (1.58 + 0.915i)2-s + (1.91 − 0.512i)3-s + (0.677 + 1.17i)4-s + (−1.69 − 1.45i)5-s + (3.50 + 0.939i)6-s + (−1.76 − 3.06i)7-s − 1.18i·8-s + (0.803 − 0.463i)9-s + (−1.36 − 3.86i)10-s + (3.74 − 1.00i)11-s + (1.89 + 1.89i)12-s − 6.48i·14-s + (−3.99 − 1.91i)15-s + (2.43 − 4.22i)16-s + (−0.524 + 1.95i)17-s + 1.69·18-s + ⋯ |
L(s) = 1 | + (1.12 + 0.647i)2-s + (1.10 − 0.296i)3-s + (0.338 + 0.586i)4-s + (−0.759 − 0.650i)5-s + (1.43 + 0.383i)6-s + (−0.668 − 1.15i)7-s − 0.417i·8-s + (0.267 − 0.154i)9-s + (−0.430 − 1.22i)10-s + (1.12 − 0.302i)11-s + (0.548 + 0.548i)12-s − 1.73i·14-s + (−1.03 − 0.494i)15-s + (0.609 − 1.05i)16-s + (−0.127 + 0.474i)17-s + 0.400·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 + 0.653i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.756 + 0.653i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.03108 - 1.12807i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.03108 - 1.12807i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.69 + 1.45i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.58 - 0.915i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.91 + 0.512i)T + (2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (1.76 + 3.06i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.74 + 1.00i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (0.524 - 1.95i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (0.139 - 0.518i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (0.0788 + 0.294i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-1.71 - 0.988i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.13 + 4.13i)T - 31iT^{2} \) |
| 37 | \( 1 + (2.70 - 4.69i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.174 + 0.649i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-8.51 - 2.28i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 9.75T + 47T^{2} \) |
| 53 | \( 1 + (-3.16 - 3.16i)T + 53iT^{2} \) |
| 59 | \( 1 + (11.7 + 3.14i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.44 - 2.49i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.98 - 1.14i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.46 - 1.19i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 - 14.7iT - 73T^{2} \) |
| 79 | \( 1 + 1.59iT - 79T^{2} \) |
| 83 | \( 1 + 7.57T + 83T^{2} \) |
| 89 | \( 1 + (1.21 + 4.54i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (15.4 - 8.91i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.886259563878319325645835204975, −9.063581127621240230940540996530, −8.214962736404883627961236136390, −7.38069128185452210406845807205, −6.73550577767773583389486207404, −5.73966325266268790683145334903, −4.31260568747681400707897549377, −3.95448044125985351484206889874, −3.06571671996911120790685882717, −1.04703815158443639442378688784,
2.30260352543598557120806378710, 2.95849149311839495224620385358, 3.69752546918475129068920871830, 4.46114918038890962847188240163, 5.77300806382504610724631189256, 6.69556194470941698557382213678, 7.85013132681904359255727915539, 8.841253200348573528534384412662, 9.255340441487114465941450446554, 10.42780698842025180818387344678