L(s) = 1 | + (−1.80 + 1.04i)2-s + (0.713 − 2.66i)3-s + (1.17 − 2.04i)4-s + (2.22 + 0.194i)5-s + (1.48 + 5.55i)6-s + (−1.45 + 2.52i)7-s + 0.750i·8-s + (−3.97 − 2.29i)9-s + (−4.23 + 1.97i)10-s + (0.00681 − 0.0254i)11-s + (−4.59 − 4.59i)12-s − 6.07i·14-s + (2.10 − 5.79i)15-s + (1.57 + 2.72i)16-s + (2.76 − 0.741i)17-s + 9.58·18-s + ⋯ |
L(s) = 1 | + (−1.27 + 0.738i)2-s + (0.411 − 1.53i)3-s + (0.589 − 1.02i)4-s + (0.996 + 0.0869i)5-s + (0.607 + 2.26i)6-s + (−0.550 + 0.952i)7-s + 0.265i·8-s + (−1.32 − 0.765i)9-s + (−1.33 + 0.624i)10-s + (0.00205 − 0.00767i)11-s + (−1.32 − 1.32i)12-s − 1.62i·14-s + (0.543 − 1.49i)15-s + (0.393 + 0.682i)16-s + (0.671 − 0.179i)17-s + 2.26·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.824 + 0.566i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.824 + 0.566i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00299 - 0.311358i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00299 - 0.311358i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.22 - 0.194i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (1.80 - 1.04i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.713 + 2.66i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (1.45 - 2.52i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.00681 + 0.0254i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-2.76 + 0.741i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-4.62 + 1.23i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.358 - 0.0961i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-3.62 + 2.09i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.835 - 0.835i)T - 31iT^{2} \) |
| 37 | \( 1 + (3.22 + 5.58i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.57 - 2.02i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (1.79 + 6.69i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 0.833T + 47T^{2} \) |
| 53 | \( 1 + (-0.902 - 0.902i)T + 53iT^{2} \) |
| 59 | \( 1 + (-0.387 - 1.44i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-5.35 + 9.26i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (10.6 - 6.15i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.957 - 3.57i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 15.0iT - 73T^{2} \) |
| 79 | \( 1 - 4.25iT - 79T^{2} \) |
| 83 | \( 1 - 1.31T + 83T^{2} \) |
| 89 | \( 1 + (-3.23 - 0.867i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (0.351 + 0.202i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.615360781750115715313516567327, −9.139865286826044365217477761932, −8.403155880299672131094053716921, −7.52701919399634140710206293215, −6.90937481199772156614499156183, −6.12413685945732025729100571811, −5.51280118045572628723761354095, −3.06161995190510623134375368638, −2.06308372099365844265072094730, −0.911880240108704267850344251340,
1.18964357802513648038031865662, 2.76682771391222428133153897793, 3.53116181060236376111142002732, 4.77390445829057680314560997560, 5.74868782352993138855240041769, 7.13908397965510069324652780409, 8.210230092618324643780546905821, 9.053894157047679628254405158517, 9.664267213058741828235188629392, 10.13357366197801514805161815910