L(s) = 1 | + (0.113 + 0.0656i)2-s + (−0.0890 − 0.332i)3-s + (−0.991 − 1.71i)4-s + (2.08 + 0.813i)5-s + (0.0116 − 0.0436i)6-s + (1.39 + 2.40i)7-s − 0.522i·8-s + (2.49 − 1.44i)9-s + (0.183 + 0.229i)10-s + (1.04 + 3.91i)11-s + (−0.482 + 0.482i)12-s + 0.365i·14-s + (0.0847 − 0.764i)15-s + (−1.94 + 3.37i)16-s + (2.34 + 0.627i)17-s + 0.378·18-s + ⋯ |
L(s) = 1 | + (0.0804 + 0.0464i)2-s + (−0.0513 − 0.191i)3-s + (−0.495 − 0.858i)4-s + (0.931 + 0.363i)5-s + (0.00477 − 0.0178i)6-s + (0.525 + 0.910i)7-s − 0.184i·8-s + (0.831 − 0.480i)9-s + (0.0580 + 0.0724i)10-s + (0.316 + 1.18i)11-s + (−0.139 + 0.139i)12-s + 0.0976i·14-s + (0.0218 − 0.197i)15-s + (−0.487 + 0.843i)16-s + (0.567 + 0.152i)17-s + 0.0891·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.142i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 - 0.142i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.88541 + 0.134816i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.88541 + 0.134816i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.08 - 0.813i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.113 - 0.0656i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.0890 + 0.332i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-1.39 - 2.40i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.04 - 3.91i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-2.34 - 0.627i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.83 + 0.491i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (7.70 - 2.06i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-3.96 - 2.28i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.87 - 3.87i)T + 31iT^{2} \) |
| 37 | \( 1 + (-3.50 + 6.07i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.20 + 1.66i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.67 + 6.24i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 0.512T + 47T^{2} \) |
| 53 | \( 1 + (1.32 - 1.32i)T - 53iT^{2} \) |
| 59 | \( 1 + (0.679 - 2.53i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-0.641 - 1.11i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.13 + 1.80i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.66 + 6.20i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + 9.93iT - 73T^{2} \) |
| 79 | \( 1 + 8.37iT - 79T^{2} \) |
| 83 | \( 1 - 3.17T + 83T^{2} \) |
| 89 | \( 1 + (6.01 - 1.61i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (10.1 - 5.88i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07310233859061812701025365811, −9.511421910111506388797782605854, −8.800378168039940777208032780980, −7.53971989753605937851294345060, −6.51503943642436413992641683480, −5.88853349905496892071778732952, −4.99755930379792521766285254722, −4.05967283751629890938257116683, −2.23985670328596479533782074102, −1.45856498846809771401175638751,
1.10444289806714292029363608533, 2.64582985170221863960370322375, 4.08129605018566613761265586288, 4.52170398446535647486764146398, 5.71551157467651672696846289150, 6.69954850673577266854068810681, 8.075813010942802114908552582846, 8.137056593464509927238417286020, 9.490693204031898793603953957498, 10.04508982909926836715196009754