L(s) = 1 | + (1.58 + 0.915i)2-s + (−0.512 − 1.91i)3-s + (0.677 + 1.17i)4-s + (1.69 − 1.45i)5-s + (0.939 − 3.50i)6-s + (1.76 + 3.06i)7-s − 1.18i·8-s + (−0.803 + 0.463i)9-s + (4.02 − 0.752i)10-s + (1.00 + 3.74i)11-s + (1.89 − 1.89i)12-s + 6.48i·14-s + (−3.65 − 2.50i)15-s + (2.43 − 4.22i)16-s + (1.95 + 0.524i)17-s − 1.69·18-s + ⋯ |
L(s) = 1 | + (1.12 + 0.647i)2-s + (−0.296 − 1.10i)3-s + (0.338 + 0.586i)4-s + (0.759 − 0.650i)5-s + (0.383 − 1.43i)6-s + (0.668 + 1.15i)7-s − 0.417i·8-s + (−0.267 + 0.154i)9-s + (1.27 − 0.237i)10-s + (0.302 + 1.12i)11-s + (0.548 − 0.548i)12-s + 1.73i·14-s + (−0.943 − 0.646i)15-s + (0.609 − 1.05i)16-s + (0.474 + 0.127i)17-s − 0.400·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.940 + 0.340i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.940 + 0.340i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.06915 - 0.538620i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.06915 - 0.538620i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1.69 + 1.45i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.58 - 0.915i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.512 + 1.91i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-1.76 - 3.06i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.00 - 3.74i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.95 - 0.524i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (0.518 + 0.139i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.294 + 0.0788i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (1.71 + 0.988i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.13 + 4.13i)T + 31iT^{2} \) |
| 37 | \( 1 + (-2.70 + 4.69i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.649 - 0.174i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (2.28 - 8.51i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 9.75T + 47T^{2} \) |
| 53 | \( 1 + (-3.16 + 3.16i)T - 53iT^{2} \) |
| 59 | \( 1 + (3.14 - 11.7i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.44 - 2.49i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.98 - 1.14i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.19 + 4.46i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 - 14.7iT - 73T^{2} \) |
| 79 | \( 1 - 1.59iT - 79T^{2} \) |
| 83 | \( 1 - 7.57T + 83T^{2} \) |
| 89 | \( 1 + (4.54 - 1.21i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (15.4 - 8.91i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.924348652873880090788632466781, −9.297870130402568829817245081540, −8.152249991945685832435715572816, −7.30782033652077956986638654745, −6.41866343392385829446982987202, −5.75024934838796631770986845746, −5.10935050059026889285046138926, −4.17654878715663322820303428707, −2.35253488640686339521977504910, −1.39612149501692483280436928722,
1.66455531984593899426296289389, 3.25540819336390688373578736699, 3.75365766452158288098844516485, 4.81432045763821304972414176585, 5.40673166167496895113815774821, 6.41950503248978605406313294484, 7.60039841154012086062307504990, 8.739944427890165704839592146589, 9.864132021730974351564906183112, 10.53261787771275877583899657120