L(s) = 1 | + (−1.49 − 0.318i)2-s + (−0.300 + 2.86i)3-s + (0.317 + 0.141i)4-s + (1.57 + 1.74i)5-s + (1.36 − 4.19i)6-s + (0.680 − 2.55i)7-s + (2.04 + 1.48i)8-s + (−5.17 − 1.10i)9-s + (−1.79 − 3.11i)10-s + (−0.500 + 0.866i)12-s + (0.0571 + 0.175i)13-s + (−1.83 + 3.61i)14-s + (−5.46 + 3.97i)15-s + (−3.06 − 3.39i)16-s + (−3.83 + 0.815i)17-s + (7.40 + 3.29i)18-s + ⋯ |
L(s) = 1 | + (−1.05 − 0.225i)2-s + (−0.173 + 1.65i)3-s + (0.158 + 0.0706i)4-s + (0.702 + 0.780i)5-s + (0.556 − 1.71i)6-s + (0.257 − 0.966i)7-s + (0.724 + 0.526i)8-s + (−1.72 − 0.366i)9-s + (−0.568 − 0.984i)10-s + (−0.144 + 0.249i)12-s + (0.0158 + 0.0487i)13-s + (−0.490 + 0.966i)14-s + (−1.41 + 1.02i)15-s + (−0.765 − 0.849i)16-s + (−0.930 + 0.197i)17-s + (1.74 + 0.777i)18-s + ⋯ |
Λ(s)=(=(847s/2ΓC(s)L(s)(−0.957+0.288i)Λ(2−s)
Λ(s)=(=(847s/2ΓC(s+1/2)L(s)(−0.957+0.288i)Λ(1−s)
Degree: |
2 |
Conductor: |
847
= 7⋅112
|
Sign: |
−0.957+0.288i
|
Analytic conductor: |
6.76332 |
Root analytic conductor: |
2.60064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ847(632,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 847, ( :1/2), −0.957+0.288i)
|
Particular Values
L(1) |
≈ |
0.0604304−0.409982i |
L(21) |
≈ |
0.0604304−0.409982i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−0.680+2.55i)T |
| 11 | 1 |
good | 2 | 1+(1.49+0.318i)T+(1.82+0.813i)T2 |
| 3 | 1+(0.300−2.86i)T+(−2.93−0.623i)T2 |
| 5 | 1+(−1.57−1.74i)T+(−0.522+4.97i)T2 |
| 13 | 1+(−0.0571−0.175i)T+(−10.5+7.64i)T2 |
| 17 | 1+(3.83−0.815i)T+(15.5−6.91i)T2 |
| 19 | 1+(0.706−0.314i)T+(12.7−14.1i)T2 |
| 23 | 1+(4.17−7.23i)T+(−11.5−19.9i)T2 |
| 29 | 1+(6.60−4.80i)T+(8.96−27.5i)T2 |
| 31 | 1+(−1.77+1.97i)T+(−3.24−30.8i)T2 |
| 37 | 1+(−0.713−6.78i)T+(−36.1+7.69i)T2 |
| 41 | 1+(−0.344−0.250i)T+(12.6+38.9i)T2 |
| 43 | 1+1.18T+43T2 |
| 47 | 1+(7.01−3.12i)T+(31.4−34.9i)T2 |
| 53 | 1+(−4.38+4.87i)T+(−5.54−52.7i)T2 |
| 59 | 1+(−0.186−0.0831i)T+(39.4+43.8i)T2 |
| 61 | 1+(9.75+10.8i)T+(−6.37+60.6i)T2 |
| 67 | 1+(1.87+3.25i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3.07−9.47i)T+(−57.4−41.7i)T2 |
| 73 | 1+(0.110+0.0490i)T+(48.8+54.2i)T2 |
| 79 | 1+(−0.320−0.0681i)T+(72.1+32.1i)T2 |
| 83 | 1+(1.03−3.19i)T+(−67.1−48.7i)T2 |
| 89 | 1+(−2.32+4.02i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−4.05−12.4i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37052356231650429525268969653, −9.882966103030263597010682287989, −9.386857628654353229634427797922, −8.440241418466243637006847828841, −7.47067780230165797787912980551, −6.31551695619462075635085401583, −5.19243730187489844454062508307, −4.34794911463438874643957334815, −3.38143547481003515113879441075, −1.83308867339941717738977421069,
0.28951193368231981280083381486, 1.64119021970139209308348110458, 2.33619768482599554222863110998, 4.53341954234939125195878489427, 5.73203048234856648179718458796, 6.39294535186339766505502151983, 7.35766650823010949351015546032, 8.143138638006380178671449516744, 8.796005106302892121212897145466, 9.270592007230248979298608862805