Properties

Label 2-847-1.1-c3-0-9
Degree $2$
Conductor $847$
Sign $1$
Analytic cond. $49.9746$
Root an. cond. $7.06927$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.24·2-s − 5.49·3-s + 2.53·4-s − 16.0·5-s − 17.8·6-s + 7·7-s − 17.7·8-s + 3.16·9-s − 52.2·10-s − 13.9·12-s − 35.3·13-s + 22.7·14-s + 88.4·15-s − 77.8·16-s − 40.4·17-s + 10.2·18-s − 118.·19-s − 40.7·20-s − 38.4·21-s − 174.·23-s + 97.4·24-s + 134.·25-s − 114.·26-s + 130.·27-s + 17.7·28-s + 262.·29-s + 286.·30-s + ⋯
L(s)  = 1  + 1.14·2-s − 1.05·3-s + 0.316·4-s − 1.43·5-s − 1.21·6-s + 0.377·7-s − 0.784·8-s + 0.117·9-s − 1.65·10-s − 0.334·12-s − 0.754·13-s + 0.433·14-s + 1.52·15-s − 1.21·16-s − 0.577·17-s + 0.134·18-s − 1.42·19-s − 0.455·20-s − 0.399·21-s − 1.58·23-s + 0.828·24-s + 1.07·25-s − 0.865·26-s + 0.933·27-s + 0.119·28-s + 1.68·29-s + 1.74·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(49.9746\)
Root analytic conductor: \(7.06927\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5166195726\)
\(L(\frac12)\) \(\approx\) \(0.5166195726\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
11 \( 1 \)
good2 \( 1 - 3.24T + 8T^{2} \)
3 \( 1 + 5.49T + 27T^{2} \)
5 \( 1 + 16.0T + 125T^{2} \)
13 \( 1 + 35.3T + 2.19e3T^{2} \)
17 \( 1 + 40.4T + 4.91e3T^{2} \)
19 \( 1 + 118.T + 6.85e3T^{2} \)
23 \( 1 + 174.T + 1.21e4T^{2} \)
29 \( 1 - 262.T + 2.43e4T^{2} \)
31 \( 1 + 36.1T + 2.97e4T^{2} \)
37 \( 1 - 19.0T + 5.06e4T^{2} \)
41 \( 1 + 156.T + 6.89e4T^{2} \)
43 \( 1 + 287.T + 7.95e4T^{2} \)
47 \( 1 - 397.T + 1.03e5T^{2} \)
53 \( 1 - 272.T + 1.48e5T^{2} \)
59 \( 1 + 507.T + 2.05e5T^{2} \)
61 \( 1 + 35.5T + 2.26e5T^{2} \)
67 \( 1 - 979.T + 3.00e5T^{2} \)
71 \( 1 - 750.T + 3.57e5T^{2} \)
73 \( 1 + 395.T + 3.89e5T^{2} \)
79 \( 1 - 736.T + 4.93e5T^{2} \)
83 \( 1 + 582.T + 5.71e5T^{2} \)
89 \( 1 + 806.T + 7.04e5T^{2} \)
97 \( 1 + 957.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15364617340704496479691036112, −8.692165156886550043103518769685, −8.086766936372657198370434050822, −6.85499734329122203101798381548, −6.19087026861756053298857249678, −5.11961573762048942432391398474, −4.47912252751872200064768012615, −3.83635299478462737059996578924, −2.48715025033123340933215350948, −0.33210805545570359202129519817, 0.33210805545570359202129519817, 2.48715025033123340933215350948, 3.83635299478462737059996578924, 4.47912252751872200064768012615, 5.11961573762048942432391398474, 6.19087026861756053298857249678, 6.85499734329122203101798381548, 8.086766936372657198370434050822, 8.692165156886550043103518769685, 10.15364617340704496479691036112

Graph of the $Z$-function along the critical line