L(s) = 1 | + 4·4-s − 2·5-s + 8·9-s − 4·11-s + 2·16-s − 8·19-s − 8·20-s − 4·25-s + 8·29-s − 24·31-s + 32·36-s − 12·41-s − 16·44-s − 16·45-s + 20·49-s + 8·55-s + 16·59-s + 12·61-s − 8·64-s − 20·71-s − 32·76-s + 24·79-s − 4·80-s + 24·81-s − 48·89-s + 16·95-s − 32·99-s + ⋯ |
L(s) = 1 | + 2·4-s − 0.894·5-s + 8/3·9-s − 1.20·11-s + 1/2·16-s − 1.83·19-s − 1.78·20-s − 4/5·25-s + 1.48·29-s − 4.31·31-s + 16/3·36-s − 1.87·41-s − 2.41·44-s − 2.38·45-s + 20/7·49-s + 1.07·55-s + 2.08·59-s + 1.53·61-s − 64-s − 2.37·71-s − 3.67·76-s + 2.70·79-s − 0.447·80-s + 8/3·81-s − 5.08·89-s + 1.64·95-s − 3.21·99-s + ⋯ |
Λ(s)=(=((58⋅178)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((58⋅178)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9289435161 |
L(21) |
≈ |
0.9289435161 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+2T+8T2+6T3+38T4+6pT5+8p2T6+2p3T7+p4T8 |
| 17 | (1+T2)4 |
good | 2 | 1−p2T2+7pT4−5p3T6+81T8−5p5T10+7p5T12−p8T14+p8T16 |
| 3 | 1−8T2+40T4−164T6+538T8−164p2T10+40p4T12−8p6T14+p8T16 |
| 7 | 1−20T2+152T4−376T6−74pT8−376p2T10+152p4T12−20p6T14+p8T16 |
| 11 | (1+2T+30T2+40T3+420T4+40pT5+30p2T6+2p3T7+p4T8)2 |
| 13 | 1−12T2+316T4−5652T6+62646T8−5652p2T10+316p4T12−12p6T14+p8T16 |
| 19 | (1+4T+44T2+148T3+1062T4+148pT5+44p2T6+4p3T7+p4T8)2 |
| 23 | 1−128T2+8120T4−325980T6+8959290T8−325980p2T10+8120p4T12−128p6T14+p8T16 |
| 29 | (1−4T+84T2−204T3+3110T4−204pT5+84p2T6−4p3T7+p4T8)2 |
| 31 | (1+12T+118T2+926T3+5468T4+926pT5+118p2T6+12p3T7+p4T8)2 |
| 37 | 1−184T2+14844T4−737480T6+28822886T8−737480p2T10+14844p4T12−184p6T14+p8T16 |
| 41 | (1+6T+128T2+586T3+7526T4+586pT5+128p2T6+6p3T7+p4T8)2 |
| 43 | 1−212T2+23132T4−1654508T6+83718774T8−1654508p2T10+23132p4T12−212p6T14+p8T16 |
| 47 | 1−284T2+38668T4−3256868T6+184549366T8−3256868p2T10+38668p4T12−284p6T14+p8T16 |
| 53 | 1−152T2+14780T4−1127656T6+65975398T8−1127656p2T10+14780p4T12−152p6T14+p8T16 |
| 59 | (1−2T+pT2)8 |
| 61 | (1−6T+152T2−762T3+12982T4−762pT5+152p2T6−6p3T7+p4T8)2 |
| 67 | 1−396T2+74604T4−8766036T6+702758870T8−8766036p2T10+74604p4T12−396p6T14+p8T16 |
| 71 | (1+10T+266T2+1932T3+27932T4+1932pT5+266p2T6+10p3T7+p4T8)2 |
| 73 | 1−228T2+27476T4−2839068T6+243837526T8−2839068p2T10+27476p4T12−228p6T14+p8T16 |
| 79 | (1−12T+258T2−2274T3+27756T4−2274pT5+258p2T6−12p3T7+p4T8)2 |
| 83 | 1−380T2+76796T4−10351396T6+1000791862T8−10351396p2T10+76796p4T12−380p6T14+p8T16 |
| 89 | (1+24T+492T2+6276T3+71250T4+6276pT5+492p2T6+24p3T7+p4T8)2 |
| 97 | 1−520T2+132860T4−21638328T6+2473797510T8−21638328p2T10+132860p4T12−520p6T14+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.84753743345032280555999676393, −6.77106616517837562992908851303, −6.51587921912228671867944115608, −6.44375385686347397013938838855, −6.32858783174428522241835341773, −5.88732080022908782577306448590, −5.60250454769964844469220937588, −5.59578992718384232273264535218, −5.47425074251320789156602539935, −5.15909887959126639872194083157, −5.01790370209473958983877365535, −4.75578477202113841834157296740, −4.52232654991690591442318789920, −4.19908745218452527558406723933, −4.01454426985522740121796022574, −3.84281891265127316846266739828, −3.83429780120465818778217711126, −3.82968295194503621722075766395, −3.05165080139244125986926659785, −2.81598290500285312517941002531, −2.73871140181279190364178298869, −2.13063556655759572533834427822, −2.04510466587025927639381628107, −1.93659467977269682117792101212, −1.48594716639625440615454634913,
1.48594716639625440615454634913, 1.93659467977269682117792101212, 2.04510466587025927639381628107, 2.13063556655759572533834427822, 2.73871140181279190364178298869, 2.81598290500285312517941002531, 3.05165080139244125986926659785, 3.82968295194503621722075766395, 3.83429780120465818778217711126, 3.84281891265127316846266739828, 4.01454426985522740121796022574, 4.19908745218452527558406723933, 4.52232654991690591442318789920, 4.75578477202113841834157296740, 5.01790370209473958983877365535, 5.15909887959126639872194083157, 5.47425074251320789156602539935, 5.59578992718384232273264535218, 5.60250454769964844469220937588, 5.88732080022908782577306448590, 6.32858783174428522241835341773, 6.44375385686347397013938838855, 6.51587921912228671867944115608, 6.77106616517837562992908851303, 6.84753743345032280555999676393
Plot not available for L-functions of degree greater than 10.