L(s) = 1 | − 1.57i·2-s + 2.87i·3-s − 0.494·4-s + (0.146 + 2.23i)5-s + 4.53·6-s − 1.42i·7-s − 2.37i·8-s − 5.24·9-s + (3.52 − 0.231i)10-s + 0.0740·11-s − 1.42i·12-s − 5.70i·13-s − 2.24·14-s + (−6.40 + 0.420i)15-s − 4.74·16-s + i·17-s + ⋯ |
L(s) = 1 | − 1.11i·2-s + 1.65i·3-s − 0.247·4-s + (0.0654 + 0.997i)5-s + 1.85·6-s − 0.536i·7-s − 0.840i·8-s − 1.74·9-s + (1.11 − 0.0731i)10-s + 0.0223·11-s − 0.410i·12-s − 1.58i·13-s − 0.599·14-s + (−1.65 + 0.108i)15-s − 1.18·16-s + 0.242i·17-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)(0.997−0.0654i)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)(0.997−0.0654i)Λ(1−s)
Degree: |
2 |
Conductor: |
85
= 5⋅17
|
Sign: |
0.997−0.0654i
|
Analytic conductor: |
0.678728 |
Root analytic conductor: |
0.823849 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(69,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 85, ( :1/2), 0.997−0.0654i)
|
Particular Values
L(1) |
≈ |
1.01553+0.0332860i |
L(21) |
≈ |
1.01553+0.0332860i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.146−2.23i)T |
| 17 | 1−iT |
good | 2 | 1+1.57iT−2T2 |
| 3 | 1−2.87iT−3T2 |
| 7 | 1+1.42iT−7T2 |
| 11 | 1−0.0740T+11T2 |
| 13 | 1+5.70iT−13T2 |
| 19 | 1−4.90T+19T2 |
| 23 | 1−3.88iT−23T2 |
| 29 | 1+5.91T+29T2 |
| 31 | 1−0.388T+31T2 |
| 37 | 1+9.91iT−37T2 |
| 41 | 1+6.61T+41T2 |
| 43 | 1−6.94iT−43T2 |
| 47 | 1−5.70iT−47T2 |
| 53 | 1+0.0216iT−53T2 |
| 59 | 1−2T+59T2 |
| 61 | 1+3.47T+61T2 |
| 67 | 1−6.71iT−67T2 |
| 71 | 1−3.84T+71T2 |
| 73 | 1−13.5iT−73T2 |
| 79 | 1−1.05T+79T2 |
| 83 | 1+11.8iT−83T2 |
| 89 | 1−1.99T+89T2 |
| 97 | 1+5.34iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.39290144291424038432032453265, −13.10973978871794805504059537895, −11.55171301052548810113526768587, −10.80529398385985662947645173805, −10.19609308384168762839618956373, −9.451939587445893698388504674552, −7.49911545730733127152346504893, −5.60250454769964844469220937588, −3.83429780120465818778217711126, −3.05165080139244125986926659785,
1.93659467977269682117792101212, 5.15909887959126639872194083157, 6.32858783174428522241835341773, 7.21972602277824192909256680897, 8.281939640133313509184731407968, 9.135930178200450976256179791144, 11.67804568240630967046975780479, 12.09264939637504968630227480861, 13.45918334354064281070858125900, 14.01984473898385951141564077387