L(s) = 1 | − 1.57i·2-s + 2.87i·3-s − 0.494·4-s + (0.146 + 2.23i)5-s + 4.53·6-s − 1.42i·7-s − 2.37i·8-s − 5.24·9-s + (3.52 − 0.231i)10-s + 0.0740·11-s − 1.42i·12-s − 5.70i·13-s − 2.24·14-s + (−6.40 + 0.420i)15-s − 4.74·16-s + i·17-s + ⋯ |
L(s) = 1 | − 1.11i·2-s + 1.65i·3-s − 0.247·4-s + (0.0654 + 0.997i)5-s + 1.85·6-s − 0.536i·7-s − 0.840i·8-s − 1.74·9-s + (1.11 − 0.0731i)10-s + 0.0223·11-s − 0.410i·12-s − 1.58i·13-s − 0.599·14-s + (−1.65 + 0.108i)15-s − 1.18·16-s + 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0654i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.01553 + 0.0332860i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.01553 + 0.0332860i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.146 - 2.23i)T \) |
| 17 | \( 1 - iT \) |
good | 2 | \( 1 + 1.57iT - 2T^{2} \) |
| 3 | \( 1 - 2.87iT - 3T^{2} \) |
| 7 | \( 1 + 1.42iT - 7T^{2} \) |
| 11 | \( 1 - 0.0740T + 11T^{2} \) |
| 13 | \( 1 + 5.70iT - 13T^{2} \) |
| 19 | \( 1 - 4.90T + 19T^{2} \) |
| 23 | \( 1 - 3.88iT - 23T^{2} \) |
| 29 | \( 1 + 5.91T + 29T^{2} \) |
| 31 | \( 1 - 0.388T + 31T^{2} \) |
| 37 | \( 1 + 9.91iT - 37T^{2} \) |
| 41 | \( 1 + 6.61T + 41T^{2} \) |
| 43 | \( 1 - 6.94iT - 43T^{2} \) |
| 47 | \( 1 - 5.70iT - 47T^{2} \) |
| 53 | \( 1 + 0.0216iT - 53T^{2} \) |
| 59 | \( 1 - 2T + 59T^{2} \) |
| 61 | \( 1 + 3.47T + 61T^{2} \) |
| 67 | \( 1 - 6.71iT - 67T^{2} \) |
| 71 | \( 1 - 3.84T + 71T^{2} \) |
| 73 | \( 1 - 13.5iT - 73T^{2} \) |
| 79 | \( 1 - 1.05T + 79T^{2} \) |
| 83 | \( 1 + 11.8iT - 83T^{2} \) |
| 89 | \( 1 - 1.99T + 89T^{2} \) |
| 97 | \( 1 + 5.34iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.39290144291424038432032453265, −13.10973978871794805504059537895, −11.55171301052548810113526768587, −10.80529398385985662947645173805, −10.19609308384168762839618956373, −9.451939587445893698388504674552, −7.49911545730733127152346504893, −5.60250454769964844469220937588, −3.83429780120465818778217711126, −3.05165080139244125986926659785,
1.93659467977269682117792101212, 5.15909887959126639872194083157, 6.32858783174428522241835341773, 7.21972602277824192909256680897, 8.281939640133313509184731407968, 9.135930178200450976256179791144, 11.67804568240630967046975780479, 12.09264939637504968630227480861, 13.45918334354064281070858125900, 14.01984473898385951141564077387