L(s) = 1 | + (−1.93 + 1.93i)2-s + (−1.42 − 0.591i)3-s − 5.45i·4-s + (0.382 − 0.923i)5-s + (3.90 − 1.61i)6-s + (−0.483 − 1.16i)7-s + (6.67 + 6.67i)8-s + (−0.429 − 0.429i)9-s + (1.04 + 2.52i)10-s + (0.386 − 0.159i)11-s + (−3.22 + 7.79i)12-s − 5.66i·13-s + (3.18 + 1.32i)14-s + (−1.09 + 1.09i)15-s − 14.8·16-s + (1.27 − 3.92i)17-s + ⋯ |
L(s) = 1 | + (−1.36 + 1.36i)2-s + (−0.825 − 0.341i)3-s − 2.72i·4-s + (0.171 − 0.413i)5-s + (1.59 − 0.659i)6-s + (−0.182 − 0.441i)7-s + (2.35 + 2.35i)8-s + (−0.143 − 0.143i)9-s + (0.330 + 0.797i)10-s + (0.116 − 0.0482i)11-s + (−0.932 + 2.25i)12-s − 1.57i·13-s + (0.852 + 0.353i)14-s + (−0.282 + 0.282i)15-s − 3.71·16-s + (0.309 − 0.950i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.789 + 0.614i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.789 + 0.614i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.305878 - 0.104999i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.305878 - 0.104999i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.382 + 0.923i)T \) |
| 17 | \( 1 + (-1.27 + 3.92i)T \) |
good | 2 | \( 1 + (1.93 - 1.93i)T - 2iT^{2} \) |
| 3 | \( 1 + (1.42 + 0.591i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (0.483 + 1.16i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.386 + 0.159i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 5.66iT - 13T^{2} \) |
| 19 | \( 1 + (0.0948 - 0.0948i)T - 19iT^{2} \) |
| 23 | \( 1 + (6.30 - 2.60i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (0.126 - 0.304i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (0.559 + 0.231i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-8.16 - 3.38i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-0.625 - 1.50i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (1.41 + 1.41i)T + 43iT^{2} \) |
| 47 | \( 1 + 5.06iT - 47T^{2} \) |
| 53 | \( 1 + (1.09 - 1.09i)T - 53iT^{2} \) |
| 59 | \( 1 + (-0.997 - 0.997i)T + 59iT^{2} \) |
| 61 | \( 1 + (-2.98 - 7.21i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 12.1T + 67T^{2} \) |
| 71 | \( 1 + (4.45 + 1.84i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (1.10 - 2.67i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-4.00 + 1.65i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-3.10 + 3.10i)T - 83iT^{2} \) |
| 89 | \( 1 + 4.98iT - 89T^{2} \) |
| 97 | \( 1 + (-0.243 + 0.587i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.51266238428336667858855354922, −13.30032005719569766266001815068, −11.71157898823074063664904482539, −10.44048439188333063627250073768, −9.589131899389589947362526283906, −8.287211704614109394575445016164, −7.30918999068698331973787007628, −6.09605228828348968395098163212, −5.30792889446107921951414610202, −0.69569041440203107906335757608,
2.21195337879718829362405162580, 4.09793045906188679932659025571, 6.36791281353459152180680864396, 8.001759764439202344084297525463, 9.207679015789890461103200196241, 10.12672219570034267159152919679, 11.05458141973646286076921162224, 11.74897272786230571670296904970, 12.63488691906418355366101202956, 14.14936269376982037164473616966