L(s) = 1 | + (−1.93 + 1.93i)2-s + (−1.42 − 0.591i)3-s − 5.45i·4-s + (0.382 − 0.923i)5-s + (3.90 − 1.61i)6-s + (−0.483 − 1.16i)7-s + (6.67 + 6.67i)8-s + (−0.429 − 0.429i)9-s + (1.04 + 2.52i)10-s + (0.386 − 0.159i)11-s + (−3.22 + 7.79i)12-s − 5.66i·13-s + (3.18 + 1.32i)14-s + (−1.09 + 1.09i)15-s − 14.8·16-s + (1.27 − 3.92i)17-s + ⋯ |
L(s) = 1 | + (−1.36 + 1.36i)2-s + (−0.825 − 0.341i)3-s − 2.72i·4-s + (0.171 − 0.413i)5-s + (1.59 − 0.659i)6-s + (−0.182 − 0.441i)7-s + (2.35 + 2.35i)8-s + (−0.143 − 0.143i)9-s + (0.330 + 0.797i)10-s + (0.116 − 0.0482i)11-s + (−0.932 + 2.25i)12-s − 1.57i·13-s + (0.852 + 0.353i)14-s + (−0.282 + 0.282i)15-s − 3.71·16-s + (0.309 − 0.950i)17-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)(0.789+0.614i)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)(0.789+0.614i)Λ(1−s)
Degree: |
2 |
Conductor: |
85
= 5⋅17
|
Sign: |
0.789+0.614i
|
Analytic conductor: |
0.678728 |
Root analytic conductor: |
0.823849 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 85, ( :1/2), 0.789+0.614i)
|
Particular Values
L(1) |
≈ |
0.305878−0.104999i |
L(21) |
≈ |
0.305878−0.104999i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.382+0.923i)T |
| 17 | 1+(−1.27+3.92i)T |
good | 2 | 1+(1.93−1.93i)T−2iT2 |
| 3 | 1+(1.42+0.591i)T+(2.12+2.12i)T2 |
| 7 | 1+(0.483+1.16i)T+(−4.94+4.94i)T2 |
| 11 | 1+(−0.386+0.159i)T+(7.77−7.77i)T2 |
| 13 | 1+5.66iT−13T2 |
| 19 | 1+(0.0948−0.0948i)T−19iT2 |
| 23 | 1+(6.30−2.60i)T+(16.2−16.2i)T2 |
| 29 | 1+(0.126−0.304i)T+(−20.5−20.5i)T2 |
| 31 | 1+(0.559+0.231i)T+(21.9+21.9i)T2 |
| 37 | 1+(−8.16−3.38i)T+(26.1+26.1i)T2 |
| 41 | 1+(−0.625−1.50i)T+(−28.9+28.9i)T2 |
| 43 | 1+(1.41+1.41i)T+43iT2 |
| 47 | 1+5.06iT−47T2 |
| 53 | 1+(1.09−1.09i)T−53iT2 |
| 59 | 1+(−0.997−0.997i)T+59iT2 |
| 61 | 1+(−2.98−7.21i)T+(−43.1+43.1i)T2 |
| 67 | 1−12.1T+67T2 |
| 71 | 1+(4.45+1.84i)T+(50.2+50.2i)T2 |
| 73 | 1+(1.10−2.67i)T+(−51.6−51.6i)T2 |
| 79 | 1+(−4.00+1.65i)T+(55.8−55.8i)T2 |
| 83 | 1+(−3.10+3.10i)T−83iT2 |
| 89 | 1+4.98iT−89T2 |
| 97 | 1+(−0.243+0.587i)T+(−68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.51266238428336667858855354922, −13.30032005719569766266001815068, −11.71157898823074063664904482539, −10.44048439188333063627250073768, −9.589131899389589947362526283906, −8.287211704614109394575445016164, −7.30918999068698331973787007628, −6.09605228828348968395098163212, −5.30792889446107921951414610202, −0.69569041440203107906335757608,
2.21195337879718829362405162580, 4.09793045906188679932659025571, 6.36791281353459152180680864396, 8.001759764439202344084297525463, 9.207679015789890461103200196241, 10.12672219570034267159152919679, 11.05458141973646286076921162224, 11.74897272786230571670296904970, 12.63488691906418355366101202956, 14.14936269376982037164473616966