L(s) = 1 | + (0.680 − 0.680i)2-s + (−1.01 + 2.44i)3-s + 1.07i·4-s + (−0.923 − 0.382i)5-s + (0.976 + 2.35i)6-s + (2.85 − 1.18i)7-s + (2.09 + 2.09i)8-s + (−2.84 − 2.84i)9-s + (−0.889 + 0.368i)10-s + (−2.34 − 5.66i)11-s + (−2.62 − 1.08i)12-s + 1.16i·13-s + (1.14 − 2.75i)14-s + (1.87 − 1.87i)15-s + 0.703·16-s + (1.25 + 3.92i)17-s + ⋯ |
L(s) = 1 | + (0.481 − 0.481i)2-s + (−0.585 + 1.41i)3-s + 0.536i·4-s + (−0.413 − 0.171i)5-s + (0.398 + 0.962i)6-s + (1.08 − 0.447i)7-s + (0.739 + 0.739i)8-s + (−0.946 − 0.946i)9-s + (−0.281 + 0.116i)10-s + (−0.707 − 1.70i)11-s + (−0.757 − 0.313i)12-s + 0.321i·13-s + (0.304 − 0.735i)14-s + (0.483 − 0.483i)15-s + 0.175·16-s + (0.305 + 0.952i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 - 0.702i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.711 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.967845 + 0.397114i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.967845 + 0.397114i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.923 + 0.382i)T \) |
| 17 | \( 1 + (-1.25 - 3.92i)T \) |
good | 2 | \( 1 + (-0.680 + 0.680i)T - 2iT^{2} \) |
| 3 | \( 1 + (1.01 - 2.44i)T + (-2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (-2.85 + 1.18i)T + (4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (2.34 + 5.66i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 1.16iT - 13T^{2} \) |
| 19 | \( 1 + (-3.83 + 3.83i)T - 19iT^{2} \) |
| 23 | \( 1 + (1.19 + 2.88i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (4.61 + 1.91i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (1.42 - 3.44i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (0.151 - 0.366i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-1.57 + 0.651i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-0.0189 - 0.0189i)T + 43iT^{2} \) |
| 47 | \( 1 + 5.43iT - 47T^{2} \) |
| 53 | \( 1 + (0.244 - 0.244i)T - 53iT^{2} \) |
| 59 | \( 1 + (-2.87 - 2.87i)T + 59iT^{2} \) |
| 61 | \( 1 + (11.4 - 4.76i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 5.62T + 67T^{2} \) |
| 71 | \( 1 + (-4.12 + 9.95i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (1.52 + 0.633i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (-2.01 - 4.87i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (8.78 - 8.78i)T - 83iT^{2} \) |
| 89 | \( 1 - 3.22iT - 89T^{2} \) |
| 97 | \( 1 + (-11.9 - 4.94i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.31975840917048058449574331719, −13.34387287413421838893300974090, −11.85632119275467760944128780948, −11.08583476200567583409284123998, −10.61312727147919754163920145927, −8.811215207407080942777835111779, −7.81049110404248174468690449369, −5.48127203637532832781796205064, −4.48111923211612207638936495720, −3.42465488065181914391997182381,
1.75996424768553766619335775501, 4.88691117773629465018555276169, 5.79730450156628542030604841184, 7.38813230527674191610430998057, 7.61134984261568230546918830825, 9.822738169103701591085694778603, 11.24435158719900455481647427100, 12.14577537482450351078195706841, 13.02288874751909755927698994809, 14.17121348883406447198866836789