L(s) = 1 | + (0.680 − 0.680i)2-s + (−1.01 + 2.44i)3-s + 1.07i·4-s + (−0.923 − 0.382i)5-s + (0.976 + 2.35i)6-s + (2.85 − 1.18i)7-s + (2.09 + 2.09i)8-s + (−2.84 − 2.84i)9-s + (−0.889 + 0.368i)10-s + (−2.34 − 5.66i)11-s + (−2.62 − 1.08i)12-s + 1.16i·13-s + (1.14 − 2.75i)14-s + (1.87 − 1.87i)15-s + 0.703·16-s + (1.25 + 3.92i)17-s + ⋯ |
L(s) = 1 | + (0.481 − 0.481i)2-s + (−0.585 + 1.41i)3-s + 0.536i·4-s + (−0.413 − 0.171i)5-s + (0.398 + 0.962i)6-s + (1.08 − 0.447i)7-s + (0.739 + 0.739i)8-s + (−0.946 − 0.946i)9-s + (−0.281 + 0.116i)10-s + (−0.707 − 1.70i)11-s + (−0.757 − 0.313i)12-s + 0.321i·13-s + (0.304 − 0.735i)14-s + (0.483 − 0.483i)15-s + 0.175·16-s + (0.305 + 0.952i)17-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)(0.711−0.702i)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)(0.711−0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
85
= 5⋅17
|
Sign: |
0.711−0.702i
|
Analytic conductor: |
0.678728 |
Root analytic conductor: |
0.823849 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(76,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 85, ( :1/2), 0.711−0.702i)
|
Particular Values
L(1) |
≈ |
0.967845+0.397114i |
L(21) |
≈ |
0.967845+0.397114i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.923+0.382i)T |
| 17 | 1+(−1.25−3.92i)T |
good | 2 | 1+(−0.680+0.680i)T−2iT2 |
| 3 | 1+(1.01−2.44i)T+(−2.12−2.12i)T2 |
| 7 | 1+(−2.85+1.18i)T+(4.94−4.94i)T2 |
| 11 | 1+(2.34+5.66i)T+(−7.77+7.77i)T2 |
| 13 | 1−1.16iT−13T2 |
| 19 | 1+(−3.83+3.83i)T−19iT2 |
| 23 | 1+(1.19+2.88i)T+(−16.2+16.2i)T2 |
| 29 | 1+(4.61+1.91i)T+(20.5+20.5i)T2 |
| 31 | 1+(1.42−3.44i)T+(−21.9−21.9i)T2 |
| 37 | 1+(0.151−0.366i)T+(−26.1−26.1i)T2 |
| 41 | 1+(−1.57+0.651i)T+(28.9−28.9i)T2 |
| 43 | 1+(−0.0189−0.0189i)T+43iT2 |
| 47 | 1+5.43iT−47T2 |
| 53 | 1+(0.244−0.244i)T−53iT2 |
| 59 | 1+(−2.87−2.87i)T+59iT2 |
| 61 | 1+(11.4−4.76i)T+(43.1−43.1i)T2 |
| 67 | 1+5.62T+67T2 |
| 71 | 1+(−4.12+9.95i)T+(−50.2−50.2i)T2 |
| 73 | 1+(1.52+0.633i)T+(51.6+51.6i)T2 |
| 79 | 1+(−2.01−4.87i)T+(−55.8+55.8i)T2 |
| 83 | 1+(8.78−8.78i)T−83iT2 |
| 89 | 1−3.22iT−89T2 |
| 97 | 1+(−11.9−4.94i)T+(68.5+68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.31975840917048058449574331719, −13.34387287413421838893300974090, −11.85632119275467760944128780948, −11.08583476200567583409284123998, −10.61312727147919754163920145927, −8.811215207407080942777835111779, −7.81049110404248174468690449369, −5.48127203637532832781796205064, −4.48111923211612207638936495720, −3.42465488065181914391997182381,
1.75996424768553766619335775501, 4.88691117773629465018555276169, 5.79730450156628542030604841184, 7.38813230527674191610430998057, 7.61134984261568230546918830825, 9.822738169103701591085694778603, 11.24435158719900455481647427100, 12.14577537482450351078195706841, 13.02288874751909755927698994809, 14.17121348883406447198866836789