Properties

Label 2-85-85.59-c1-0-4
Degree 22
Conductor 8585
Sign 0.588+0.808i0.588 + 0.808i
Analytic cond. 0.6787280.678728
Root an. cond. 0.8238490.823849
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.176 + 0.176i)2-s + (−1.51 − 0.629i)3-s − 1.93i·4-s + (1.62 − 1.53i)5-s + (−0.156 − 0.377i)6-s + (0.547 + 1.32i)7-s + (0.693 − 0.693i)8-s + (−0.210 − 0.210i)9-s + (0.556 + 0.0165i)10-s + (1.03 + 2.48i)11-s + (−1.21 + 2.94i)12-s + 0.174·13-s + (−0.136 + 0.329i)14-s + (−3.43 + 1.30i)15-s − 3.63·16-s + (2.27 + 3.44i)17-s + ⋯
L(s)  = 1  + (0.124 + 0.124i)2-s + (−0.876 − 0.363i)3-s − 0.969i·4-s + (0.727 − 0.685i)5-s + (−0.0639 − 0.154i)6-s + (0.206 + 0.499i)7-s + (0.245 − 0.245i)8-s + (−0.0703 − 0.0703i)9-s + (0.175 + 0.00523i)10-s + (0.310 + 0.750i)11-s + (−0.351 + 0.849i)12-s + 0.0484·13-s + (−0.0364 + 0.0879i)14-s + (−0.887 + 0.336i)15-s − 0.908·16-s + (0.550 + 0.834i)17-s + ⋯

Functional equation

Λ(s)=(85s/2ΓC(s)L(s)=((0.588+0.808i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.588 + 0.808i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(85s/2ΓC(s+1/2)L(s)=((0.588+0.808i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.588 + 0.808i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 8585    =    5175 \cdot 17
Sign: 0.588+0.808i0.588 + 0.808i
Analytic conductor: 0.6787280.678728
Root analytic conductor: 0.8238490.823849
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ85(59,)\chi_{85} (59, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 85, ( :1/2), 0.588+0.808i)(2,\ 85,\ (\ :1/2),\ 0.588 + 0.808i)

Particular Values

L(1)L(1) \approx 0.7908640.402276i0.790864 - 0.402276i
L(12)L(\frac12) \approx 0.7908640.402276i0.790864 - 0.402276i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1+(1.62+1.53i)T 1 + (-1.62 + 1.53i)T
17 1+(2.273.44i)T 1 + (-2.27 - 3.44i)T
good2 1+(0.1760.176i)T+2iT2 1 + (-0.176 - 0.176i)T + 2iT^{2}
3 1+(1.51+0.629i)T+(2.12+2.12i)T2 1 + (1.51 + 0.629i)T + (2.12 + 2.12i)T^{2}
7 1+(0.5471.32i)T+(4.94+4.94i)T2 1 + (-0.547 - 1.32i)T + (-4.94 + 4.94i)T^{2}
11 1+(1.032.48i)T+(7.77+7.77i)T2 1 + (-1.03 - 2.48i)T + (-7.77 + 7.77i)T^{2}
13 10.174T+13T2 1 - 0.174T + 13T^{2}
19 1+(2.692.69i)T19iT2 1 + (2.69 - 2.69i)T - 19iT^{2}
23 1+(2.54+1.05i)T+(16.216.2i)T2 1 + (-2.54 + 1.05i)T + (16.2 - 16.2i)T^{2}
29 1+(5.942.46i)T+(20.5+20.5i)T2 1 + (-5.94 - 2.46i)T + (20.5 + 20.5i)T^{2}
31 1+(0.1880.454i)T+(21.921.9i)T2 1 + (0.188 - 0.454i)T + (-21.9 - 21.9i)T^{2}
37 1+(5.30+2.19i)T+(26.1+26.1i)T2 1 + (5.30 + 2.19i)T + (26.1 + 26.1i)T^{2}
41 1+(5.54+2.29i)T+(28.928.9i)T2 1 + (-5.54 + 2.29i)T + (28.9 - 28.9i)T^{2}
43 1+(8.008.00i)T43iT2 1 + (8.00 - 8.00i)T - 43iT^{2}
47 12.65T+47T2 1 - 2.65T + 47T^{2}
53 1+(8.73+8.73i)T+53iT2 1 + (8.73 + 8.73i)T + 53iT^{2}
59 1+(5.72+5.72i)T+59iT2 1 + (5.72 + 5.72i)T + 59iT^{2}
61 1+(6.412.65i)T+(43.143.1i)T2 1 + (6.41 - 2.65i)T + (43.1 - 43.1i)T^{2}
67 1+12.3iT67T2 1 + 12.3iT - 67T^{2}
71 1+(4.6711.2i)T+(50.250.2i)T2 1 + (4.67 - 11.2i)T + (-50.2 - 50.2i)T^{2}
73 1+(5.9914.4i)T+(51.651.6i)T2 1 + (5.99 - 14.4i)T + (-51.6 - 51.6i)T^{2}
79 1+(4.94+11.9i)T+(55.8+55.8i)T2 1 + (4.94 + 11.9i)T + (-55.8 + 55.8i)T^{2}
83 1+(6.066.06i)T+83iT2 1 + (-6.06 - 6.06i)T + 83iT^{2}
89 111.4iT89T2 1 - 11.4iT - 89T^{2}
97 1+(0.8792.12i)T+(68.568.5i)T2 1 + (0.879 - 2.12i)T + (-68.5 - 68.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−14.22878229174189234290650152262, −12.81305143459083596544905245985, −12.14115272550050885366180279703, −10.80370975621283226437015863879, −9.794941517071743685337967770981, −8.630278816642640461115755766497, −6.62103284979673782865944163306, −5.80528994964535584891758735969, −4.83020201582188431581469610648, −1.55870074942881671037913755154, 2.99467006010778839180334156545, 4.72000607096478589500387763141, 6.16469478457576260365743193729, 7.40084440872480146159075586997, 8.885961996383748209899652919131, 10.40201842860853381902669063420, 11.16797588666866726449340424260, 12.03603254148827562701427630983, 13.51263622640938331255135260043, 14.05738940719631618012341036375

Graph of the ZZ-function along the critical line