L(s) = 1 | + (0.352 + 0.352i)2-s + (0.0655 − 0.158i)3-s − 1.75i·4-s + (2.22 − 0.233i)5-s + (0.0789 − 0.0327i)6-s + (−3.57 + 1.48i)7-s + (1.32 − 1.32i)8-s + (2.10 + 2.10i)9-s + (0.867 + 0.702i)10-s + (−2.71 + 1.12i)11-s + (−0.277 − 0.114i)12-s + 0.983·13-s + (−1.78 − 0.739i)14-s + (0.108 − 0.367i)15-s − 2.56·16-s + (−3.97 − 1.11i)17-s + ⋯ |
L(s) = 1 | + (0.249 + 0.249i)2-s + (0.0378 − 0.0913i)3-s − 0.875i·4-s + (0.994 − 0.104i)5-s + (0.0322 − 0.0133i)6-s + (−1.35 + 0.560i)7-s + (0.468 − 0.468i)8-s + (0.700 + 0.700i)9-s + (0.274 + 0.222i)10-s + (−0.817 + 0.338i)11-s + (−0.0799 − 0.0331i)12-s + 0.272·13-s + (−0.477 − 0.197i)14-s + (0.0281 − 0.0948i)15-s − 0.641·16-s + (−0.962 − 0.269i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.122i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 + 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12583 - 0.0689475i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12583 - 0.0689475i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.22 + 0.233i)T \) |
| 17 | \( 1 + (3.97 + 1.11i)T \) |
good | 2 | \( 1 + (-0.352 - 0.352i)T + 2iT^{2} \) |
| 3 | \( 1 + (-0.0655 + 0.158i)T + (-2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (3.57 - 1.48i)T + (4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (2.71 - 1.12i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 0.983T + 13T^{2} \) |
| 19 | \( 1 + (1.81 - 1.81i)T - 19iT^{2} \) |
| 23 | \( 1 + (1.15 + 2.77i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (-0.210 + 0.507i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-6.98 - 2.89i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (3.76 - 9.09i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (2.83 + 6.84i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-5.85 + 5.85i)T - 43iT^{2} \) |
| 47 | \( 1 - 10.9T + 47T^{2} \) |
| 53 | \( 1 + (2.53 + 2.53i)T + 53iT^{2} \) |
| 59 | \( 1 + (-0.216 - 0.216i)T + 59iT^{2} \) |
| 61 | \( 1 + (2.60 + 6.28i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 5.09iT - 67T^{2} \) |
| 71 | \( 1 + (3.33 + 1.38i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-4.62 - 1.91i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (11.4 - 4.76i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (5.74 + 5.74i)T + 83iT^{2} \) |
| 89 | \( 1 + 13.2iT - 89T^{2} \) |
| 97 | \( 1 + (-4.18 - 1.73i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.97833987045927277548935689243, −13.33072018912523887053738152390, −12.52350576580854581932063491295, −10.47096676235807926491150419323, −10.05710824637119186164645388167, −8.859276416804748016895937914233, −6.88672146216983981875664605944, −6.01793249832006547079345655237, −4.80572087540721883376827377287, −2.28553238167153591848681809117,
2.80434187622316532833073440321, 4.17277877480860633602450274244, 6.16517849060474482741770615816, 7.20526374946343897246947009936, 8.875250355760475775455998716885, 9.918971402220433003942939858254, 10.93048220805254405152833006369, 12.54889627371734169776664127169, 13.16734805802509375354958571629, 13.76370139201821994115295430954