L(s) = 1 | + (0.672 + 0.672i)2-s + (−0.947 + 2.28i)3-s − 1.09i·4-s + (−0.734 + 2.11i)5-s + (−2.17 + 0.901i)6-s + (0.492 − 0.204i)7-s + (2.08 − 2.08i)8-s + (−2.20 − 2.20i)9-s + (−1.91 + 0.926i)10-s + (4.31 − 1.78i)11-s + (2.50 + 1.03i)12-s − 3.92·13-s + (0.468 + 0.194i)14-s + (−4.13 − 3.68i)15-s + 0.614·16-s + (4.03 − 0.867i)17-s + ⋯ |
L(s) = 1 | + (0.475 + 0.475i)2-s + (−0.546 + 1.32i)3-s − 0.547i·4-s + (−0.328 + 0.944i)5-s + (−0.888 + 0.367i)6-s + (0.186 − 0.0771i)7-s + (0.736 − 0.736i)8-s + (−0.736 − 0.736i)9-s + (−0.605 + 0.293i)10-s + (1.30 − 0.539i)11-s + (0.722 + 0.299i)12-s − 1.08·13-s + (0.125 + 0.0519i)14-s + (−1.06 − 0.950i)15-s + 0.153·16-s + (0.977 − 0.210i)17-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)(0.0763−0.997i)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)(0.0763−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
85
= 5⋅17
|
Sign: |
0.0763−0.997i
|
Analytic conductor: |
0.678728 |
Root analytic conductor: |
0.823849 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 85, ( :1/2), 0.0763−0.997i)
|
Particular Values
L(1) |
≈ |
0.763622+0.707402i |
L(21) |
≈ |
0.763622+0.707402i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.734−2.11i)T |
| 17 | 1+(−4.03+0.867i)T |
good | 2 | 1+(−0.672−0.672i)T+2iT2 |
| 3 | 1+(0.947−2.28i)T+(−2.12−2.12i)T2 |
| 7 | 1+(−0.492+0.204i)T+(4.94−4.94i)T2 |
| 11 | 1+(−4.31+1.78i)T+(7.77−7.77i)T2 |
| 13 | 1+3.92T+13T2 |
| 19 | 1+(−0.708+0.708i)T−19iT2 |
| 23 | 1+(2.19+5.30i)T+(−16.2+16.2i)T2 |
| 29 | 1+(3.17−7.65i)T+(−20.5−20.5i)T2 |
| 31 | 1+(2.29+0.948i)T+(21.9+21.9i)T2 |
| 37 | 1+(1.56−3.78i)T+(−26.1−26.1i)T2 |
| 41 | 1+(0.311+0.752i)T+(−28.9+28.9i)T2 |
| 43 | 1+(−4.55+4.55i)T−43iT2 |
| 47 | 1−1.70T+47T2 |
| 53 | 1+(−5.77−5.77i)T+53iT2 |
| 59 | 1+(4.28+4.28i)T+59iT2 |
| 61 | 1+(0.432+1.04i)T+(−43.1+43.1i)T2 |
| 67 | 1+7.68iT−67T2 |
| 71 | 1+(−6.41−2.65i)T+(50.2+50.2i)T2 |
| 73 | 1+(11.1+4.62i)T+(51.6+51.6i)T2 |
| 79 | 1+(1.36−0.566i)T+(55.8−55.8i)T2 |
| 83 | 1+(−11.4−11.4i)T+83iT2 |
| 89 | 1+12.0iT−89T2 |
| 97 | 1+(−0.210−0.0872i)T+(68.5+68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.53041613901997051727797124819, −14.18719824965621424311921444810, −12.13472388255126356960118454072, −11.02009103416678294638026362701, −10.28523257835607238839065608871, −9.334106653105715230028621366422, −7.27381461395879417982879893324, −6.08541919679992414669116616928, −4.88296498382985701553068765881, −3.70468341197974706217935604574,
1.73048144185212838484214803637, 4.05647116033177056536610726557, 5.54748654436376226200775698404, 7.25572320675905657850738942497, 7.968577534912149349699248915413, 9.518688751026352578855095712826, 11.62898185312708870127445809191, 11.97191094099371355707207114294, 12.64374735958038732871290547067, 13.54218158213958413741609741063