L(s) = 1 | + (1.48 + 1.48i)2-s + (0.690 − 1.66i)3-s + 2.43i·4-s + (−2.22 − 0.184i)5-s + (3.51 − 1.45i)6-s + (−2.47 + 1.02i)7-s + (−0.641 + 0.641i)8-s + (−0.183 − 0.183i)9-s + (−3.04 − 3.59i)10-s + (−0.901 + 0.373i)11-s + (4.05 + 1.67i)12-s − 2.65·13-s + (−5.21 − 2.16i)14-s + (−1.84 + 3.58i)15-s + 2.95·16-s + (3.25 − 2.53i)17-s + ⋯ |
L(s) = 1 | + (1.05 + 1.05i)2-s + (0.398 − 0.963i)3-s + 1.21i·4-s + (−0.996 − 0.0826i)5-s + (1.43 − 0.593i)6-s + (−0.937 + 0.388i)7-s + (−0.226 + 0.226i)8-s + (−0.0613 − 0.0613i)9-s + (−0.961 − 1.13i)10-s + (−0.271 + 0.112i)11-s + (1.17 + 0.484i)12-s − 0.735·13-s + (−1.39 − 0.577i)14-s + (−0.477 + 0.926i)15-s + 0.738·16-s + (0.789 − 0.613i)17-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)(0.811−0.584i)Λ(2−s)
Λ(s)=(=(85s/2ΓC(s+1/2)L(s)(0.811−0.584i)Λ(1−s)
Degree: |
2 |
Conductor: |
85
= 5⋅17
|
Sign: |
0.811−0.584i
|
Analytic conductor: |
0.678728 |
Root analytic conductor: |
0.823849 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 85, ( :1/2), 0.811−0.584i)
|
Particular Values
L(1) |
≈ |
1.38957+0.448544i |
L(21) |
≈ |
1.38957+0.448544i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.22+0.184i)T |
| 17 | 1+(−3.25+2.53i)T |
good | 2 | 1+(−1.48−1.48i)T+2iT2 |
| 3 | 1+(−0.690+1.66i)T+(−2.12−2.12i)T2 |
| 7 | 1+(2.47−1.02i)T+(4.94−4.94i)T2 |
| 11 | 1+(0.901−0.373i)T+(7.77−7.77i)T2 |
| 13 | 1+2.65T+13T2 |
| 19 | 1+(0.478−0.478i)T−19iT2 |
| 23 | 1+(−1.54−3.72i)T+(−16.2+16.2i)T2 |
| 29 | 1+(−3.83+9.26i)T+(−20.5−20.5i)T2 |
| 31 | 1+(9.10+3.77i)T+(21.9+21.9i)T2 |
| 37 | 1+(2.61−6.31i)T+(−26.1−26.1i)T2 |
| 41 | 1+(−2.80−6.76i)T+(−28.9+28.9i)T2 |
| 43 | 1+(6.29−6.29i)T−43iT2 |
| 47 | 1−0.874T+47T2 |
| 53 | 1+(2.00+2.00i)T+53iT2 |
| 59 | 1+(7.59+7.59i)T+59iT2 |
| 61 | 1+(−0.793−1.91i)T+(−43.1+43.1i)T2 |
| 67 | 1+5.73iT−67T2 |
| 71 | 1+(−1.03−0.430i)T+(50.2+50.2i)T2 |
| 73 | 1+(−2.77−1.14i)T+(51.6+51.6i)T2 |
| 79 | 1+(0.377−0.156i)T+(55.8−55.8i)T2 |
| 83 | 1+(4.64+4.64i)T+83iT2 |
| 89 | 1+5.62iT−89T2 |
| 97 | 1+(−14.2−5.89i)T+(68.5+68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.37876706353740254326724071275, −13.26333717643990101547181542283, −12.69082900241611087180198253758, −11.78181956390120552672479861346, −9.762949362875318531403801530552, −7.972894800474475780992747159097, −7.39930671162935903341873622925, −6.32171534576200659922573144782, −4.82063475491863613291608046825, −3.18027730371528488875196874763,
3.17106105126081210182067186649, 3.85651403176183235577055423608, 5.07691285919994236489658217944, 7.15904138006511970778056030842, 8.864911233555864448888622015249, 10.30321366215386142747813516720, 10.75770521565847556304430441887, 12.35324468261987737993712564810, 12.67405243118175167539523036655, 14.24757545612069675488364941527