Properties

Label 2-85-1.1-c3-0-0
Degree $2$
Conductor $85$
Sign $1$
Analytic cond. $5.01516$
Root an. cond. $2.23945$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.64·2-s − 5.37·3-s − 5.31·4-s − 5·5-s + 8.81·6-s + 2.20·7-s + 21.8·8-s + 1.88·9-s + 8.20·10-s + 18.7·11-s + 28.5·12-s + 62.9·13-s − 3.60·14-s + 26.8·15-s + 6.68·16-s − 17·17-s − 3.09·18-s − 47.8·19-s + 26.5·20-s − 11.8·21-s − 30.7·22-s + 153.·23-s − 117.·24-s + 25·25-s − 103.·26-s + 134.·27-s − 11.6·28-s + ⋯
L(s)  = 1  − 0.579·2-s − 1.03·3-s − 0.663·4-s − 0.447·5-s + 0.599·6-s + 0.118·7-s + 0.964·8-s + 0.0698·9-s + 0.259·10-s + 0.514·11-s + 0.686·12-s + 1.34·13-s − 0.0689·14-s + 0.462·15-s + 0.104·16-s − 0.242·17-s − 0.0405·18-s − 0.577·19-s + 0.296·20-s − 0.122·21-s − 0.298·22-s + 1.39·23-s − 0.997·24-s + 0.200·25-s − 0.778·26-s + 0.962·27-s − 0.0788·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(85\)    =    \(5 \cdot 17\)
Sign: $1$
Analytic conductor: \(5.01516\)
Root analytic conductor: \(2.23945\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 85,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5850602726\)
\(L(\frac12)\) \(\approx\) \(0.5850602726\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 5T \)
17 \( 1 + 17T \)
good2 \( 1 + 1.64T + 8T^{2} \)
3 \( 1 + 5.37T + 27T^{2} \)
7 \( 1 - 2.20T + 343T^{2} \)
11 \( 1 - 18.7T + 1.33e3T^{2} \)
13 \( 1 - 62.9T + 2.19e3T^{2} \)
19 \( 1 + 47.8T + 6.85e3T^{2} \)
23 \( 1 - 153.T + 1.21e4T^{2} \)
29 \( 1 + 64.4T + 2.43e4T^{2} \)
31 \( 1 + 40.9T + 2.97e4T^{2} \)
37 \( 1 - 32.6T + 5.06e4T^{2} \)
41 \( 1 - 159.T + 6.89e4T^{2} \)
43 \( 1 + 111.T + 7.95e4T^{2} \)
47 \( 1 - 614.T + 1.03e5T^{2} \)
53 \( 1 - 308.T + 1.48e5T^{2} \)
59 \( 1 - 267.T + 2.05e5T^{2} \)
61 \( 1 - 521.T + 2.26e5T^{2} \)
67 \( 1 - 118.T + 3.00e5T^{2} \)
71 \( 1 - 1.14e3T + 3.57e5T^{2} \)
73 \( 1 + 40.7T + 3.89e5T^{2} \)
79 \( 1 - 374.T + 4.93e5T^{2} \)
83 \( 1 - 826.T + 5.71e5T^{2} \)
89 \( 1 + 38.9T + 7.04e5T^{2} \)
97 \( 1 + 917.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.62064953262927678806666962454, −12.57742948317407991377594083788, −11.26615596369562402083065683204, −10.72665792889003534743245662327, −9.179278558063589002750104557368, −8.300035359640679909893669673492, −6.75505135012596944977442189398, −5.37220924724512324166708663936, −4.00385662350735805975507730683, −0.844794642058816184049789383884, 0.844794642058816184049789383884, 4.00385662350735805975507730683, 5.37220924724512324166708663936, 6.75505135012596944977442189398, 8.300035359640679909893669673492, 9.179278558063589002750104557368, 10.72665792889003534743245662327, 11.26615596369562402083065683204, 12.57742948317407991377594083788, 13.62064953262927678806666962454

Graph of the $Z$-function along the critical line