L(s) = 1 | − 1.64·2-s − 5.37·3-s − 5.31·4-s − 5·5-s + 8.81·6-s + 2.20·7-s + 21.8·8-s + 1.88·9-s + 8.20·10-s + 18.7·11-s + 28.5·12-s + 62.9·13-s − 3.60·14-s + 26.8·15-s + 6.68·16-s − 17·17-s − 3.09·18-s − 47.8·19-s + 26.5·20-s − 11.8·21-s − 30.7·22-s + 153.·23-s − 117.·24-s + 25·25-s − 103.·26-s + 134.·27-s − 11.6·28-s + ⋯ |
L(s) = 1 | − 0.579·2-s − 1.03·3-s − 0.663·4-s − 0.447·5-s + 0.599·6-s + 0.118·7-s + 0.964·8-s + 0.0698·9-s + 0.259·10-s + 0.514·11-s + 0.686·12-s + 1.34·13-s − 0.0689·14-s + 0.462·15-s + 0.104·16-s − 0.242·17-s − 0.0405·18-s − 0.577·19-s + 0.296·20-s − 0.122·21-s − 0.298·22-s + 1.39·23-s − 0.997·24-s + 0.200·25-s − 0.778·26-s + 0.962·27-s − 0.0788·28-s + ⋯ |
Λ(s)=(=(85s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(85s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.5850602726 |
L(21) |
≈ |
0.5850602726 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+5T |
| 17 | 1+17T |
good | 2 | 1+1.64T+8T2 |
| 3 | 1+5.37T+27T2 |
| 7 | 1−2.20T+343T2 |
| 11 | 1−18.7T+1.33e3T2 |
| 13 | 1−62.9T+2.19e3T2 |
| 19 | 1+47.8T+6.85e3T2 |
| 23 | 1−153.T+1.21e4T2 |
| 29 | 1+64.4T+2.43e4T2 |
| 31 | 1+40.9T+2.97e4T2 |
| 37 | 1−32.6T+5.06e4T2 |
| 41 | 1−159.T+6.89e4T2 |
| 43 | 1+111.T+7.95e4T2 |
| 47 | 1−614.T+1.03e5T2 |
| 53 | 1−308.T+1.48e5T2 |
| 59 | 1−267.T+2.05e5T2 |
| 61 | 1−521.T+2.26e5T2 |
| 67 | 1−118.T+3.00e5T2 |
| 71 | 1−1.14e3T+3.57e5T2 |
| 73 | 1+40.7T+3.89e5T2 |
| 79 | 1−374.T+4.93e5T2 |
| 83 | 1−826.T+5.71e5T2 |
| 89 | 1+38.9T+7.04e5T2 |
| 97 | 1+917.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.62064953262927678806666962454, −12.57742948317407991377594083788, −11.26615596369562402083065683204, −10.72665792889003534743245662327, −9.179278558063589002750104557368, −8.300035359640679909893669673492, −6.75505135012596944977442189398, −5.37220924724512324166708663936, −4.00385662350735805975507730683, −0.844794642058816184049789383884,
0.844794642058816184049789383884, 4.00385662350735805975507730683, 5.37220924724512324166708663936, 6.75505135012596944977442189398, 8.300035359640679909893669673492, 9.179278558063589002750104557368, 10.72665792889003534743245662327, 11.26615596369562402083065683204, 12.57742948317407991377594083788, 13.62064953262927678806666962454