L(s) = 1 | + (−0.923 − 0.382i)2-s + (1.98 − 1.32i)3-s + (0.707 + 0.707i)4-s + (−2.34 + 0.465i)6-s + (4.88 − 0.972i)7-s + (−0.382 − 0.923i)8-s + (1.03 − 2.49i)9-s + (−0.514 − 2.58i)11-s + (2.34 + 0.465i)12-s − 3.55·13-s + (−4.88 − 0.972i)14-s + i·16-s + (3.56 − 2.06i)17-s + (−1.91 + 1.91i)18-s + (−1.27 − 3.08i)19-s + ⋯ |
L(s) = 1 | + (−0.653 − 0.270i)2-s + (1.14 − 0.766i)3-s + (0.353 + 0.353i)4-s + (−0.956 + 0.190i)6-s + (1.84 − 0.367i)7-s + (−0.135 − 0.326i)8-s + (0.345 − 0.832i)9-s + (−0.155 − 0.779i)11-s + (0.676 + 0.134i)12-s − 0.986·13-s + (−1.30 − 0.259i)14-s + 0.250i·16-s + (0.865 − 0.500i)17-s + (−0.450 + 0.450i)18-s + (−0.293 − 0.707i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.156 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.156 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.48774 - 1.27046i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.48774 - 1.27046i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.923 + 0.382i)T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (-3.56 + 2.06i)T \) |
good | 3 | \( 1 + (-1.98 + 1.32i)T + (1.14 - 2.77i)T^{2} \) |
| 7 | \( 1 + (-4.88 + 0.972i)T + (6.46 - 2.67i)T^{2} \) |
| 11 | \( 1 + (0.514 + 2.58i)T + (-10.1 + 4.20i)T^{2} \) |
| 13 | \( 1 + 3.55T + 13T^{2} \) |
| 19 | \( 1 + (1.27 + 3.08i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (3.96 - 5.93i)T + (-8.80 - 21.2i)T^{2} \) |
| 29 | \( 1 + (-0.593 - 0.888i)T + (-11.0 + 26.7i)T^{2} \) |
| 31 | \( 1 + (-0.489 + 2.46i)T + (-28.6 - 11.8i)T^{2} \) |
| 37 | \( 1 + (-4.15 - 6.21i)T + (-14.1 + 34.1i)T^{2} \) |
| 41 | \( 1 + (1.27 - 1.90i)T + (-15.6 - 37.8i)T^{2} \) |
| 43 | \( 1 + (-7.30 + 3.02i)T + (30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + 7.15iT - 47T^{2} \) |
| 53 | \( 1 + (2.62 - 6.34i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (9.79 + 4.05i)T + (41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (-5.08 - 3.39i)T + (23.3 + 56.3i)T^{2} \) |
| 67 | \( 1 + (8.80 - 8.80i)T - 67iT^{2} \) |
| 71 | \( 1 + (14.0 + 2.80i)T + (65.5 + 27.1i)T^{2} \) |
| 73 | \( 1 + (-7.24 - 1.44i)T + (67.4 + 27.9i)T^{2} \) |
| 79 | \( 1 + (5.45 - 1.08i)T + (72.9 - 30.2i)T^{2} \) |
| 83 | \( 1 + (-3.02 - 1.25i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (4.91 + 4.91i)T + 89iT^{2} \) |
| 97 | \( 1 + (-13.4 - 2.67i)T + (89.6 + 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.855309289604606527296505959962, −8.928000714967611564969027247025, −8.191715259428608411689385632193, −7.67382136761168430330081317396, −7.19496171000096475586070817956, −5.60084658438281316664497645488, −4.46673926187059547533094104407, −3.09462401186672588948920841409, −2.14017662505684706364471675671, −1.15691005305367420519962964803,
1.77783014457140798390379649022, 2.60320206593345019673141227393, 4.20324097219625776917288777020, 4.84344157594028766636887834073, 5.98780917953767037901170982773, 7.59408308928814992570692069078, 7.903715837686957013441616418322, 8.632364319863303315150134455965, 9.424893999222770160620409381284, 10.21833813789103204942483475117