L(s) = 1 | + (−0.923 − 0.382i)2-s + (1.98 − 1.32i)3-s + (0.707 + 0.707i)4-s + (−2.34 + 0.465i)6-s + (4.88 − 0.972i)7-s + (−0.382 − 0.923i)8-s + (1.03 − 2.49i)9-s + (−0.514 − 2.58i)11-s + (2.34 + 0.465i)12-s − 3.55·13-s + (−4.88 − 0.972i)14-s + i·16-s + (3.56 − 2.06i)17-s + (−1.91 + 1.91i)18-s + (−1.27 − 3.08i)19-s + ⋯ |
L(s) = 1 | + (−0.653 − 0.270i)2-s + (1.14 − 0.766i)3-s + (0.353 + 0.353i)4-s + (−0.956 + 0.190i)6-s + (1.84 − 0.367i)7-s + (−0.135 − 0.326i)8-s + (0.345 − 0.832i)9-s + (−0.155 − 0.779i)11-s + (0.676 + 0.134i)12-s − 0.986·13-s + (−1.30 − 0.259i)14-s + 0.250i·16-s + (0.865 − 0.500i)17-s + (−0.450 + 0.450i)18-s + (−0.293 − 0.707i)19-s + ⋯ |
Λ(s)=(=(850s/2ΓC(s)L(s)(0.156+0.987i)Λ(2−s)
Λ(s)=(=(850s/2ΓC(s+1/2)L(s)(0.156+0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
850
= 2⋅52⋅17
|
Sign: |
0.156+0.987i
|
Analytic conductor: |
6.78728 |
Root analytic conductor: |
2.60524 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ850(207,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 850, ( :1/2), 0.156+0.987i)
|
Particular Values
L(1) |
≈ |
1.48774−1.27046i |
L(21) |
≈ |
1.48774−1.27046i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.923+0.382i)T |
| 5 | 1 |
| 17 | 1+(−3.56+2.06i)T |
good | 3 | 1+(−1.98+1.32i)T+(1.14−2.77i)T2 |
| 7 | 1+(−4.88+0.972i)T+(6.46−2.67i)T2 |
| 11 | 1+(0.514+2.58i)T+(−10.1+4.20i)T2 |
| 13 | 1+3.55T+13T2 |
| 19 | 1+(1.27+3.08i)T+(−13.4+13.4i)T2 |
| 23 | 1+(3.96−5.93i)T+(−8.80−21.2i)T2 |
| 29 | 1+(−0.593−0.888i)T+(−11.0+26.7i)T2 |
| 31 | 1+(−0.489+2.46i)T+(−28.6−11.8i)T2 |
| 37 | 1+(−4.15−6.21i)T+(−14.1+34.1i)T2 |
| 41 | 1+(1.27−1.90i)T+(−15.6−37.8i)T2 |
| 43 | 1+(−7.30+3.02i)T+(30.4−30.4i)T2 |
| 47 | 1+7.15iT−47T2 |
| 53 | 1+(2.62−6.34i)T+(−37.4−37.4i)T2 |
| 59 | 1+(9.79+4.05i)T+(41.7+41.7i)T2 |
| 61 | 1+(−5.08−3.39i)T+(23.3+56.3i)T2 |
| 67 | 1+(8.80−8.80i)T−67iT2 |
| 71 | 1+(14.0+2.80i)T+(65.5+27.1i)T2 |
| 73 | 1+(−7.24−1.44i)T+(67.4+27.9i)T2 |
| 79 | 1+(5.45−1.08i)T+(72.9−30.2i)T2 |
| 83 | 1+(−3.02−1.25i)T+(58.6+58.6i)T2 |
| 89 | 1+(4.91+4.91i)T+89iT2 |
| 97 | 1+(−13.4−2.67i)T+(89.6+37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.855309289604606527296505959962, −8.928000714967611564969027247025, −8.191715259428608411689385632193, −7.67382136761168430330081317396, −7.19496171000096475586070817956, −5.60084658438281316664497645488, −4.46673926187059547533094104407, −3.09462401186672588948920841409, −2.14017662505684706364471675671, −1.15691005305367420519962964803,
1.77783014457140798390379649022, 2.60320206593345019673141227393, 4.20324097219625776917288777020, 4.84344157594028766636887834073, 5.98780917953767037901170982773, 7.59408308928814992570692069078, 7.903715837686957013441616418322, 8.632364319863303315150134455965, 9.424893999222770160620409381284, 10.21833813789103204942483475117