L(s) = 1 | + (−0.923 + 0.382i)2-s + (−1.41 − 0.942i)3-s + (0.707 − 0.707i)4-s + (1.66 + 0.330i)6-s + (5.02 + 0.999i)7-s + (−0.382 + 0.923i)8-s + (−0.0471 − 0.113i)9-s + (−0.999 + 5.02i)11-s + (−1.66 + 0.330i)12-s + 3.13·13-s + (−5.02 + 0.999i)14-s − i·16-s + (−3.59 + 2.02i)17-s + (0.0871 + 0.0871i)18-s + (−0.297 + 0.718i)19-s + ⋯ |
L(s) = 1 | + (−0.653 + 0.270i)2-s + (−0.814 − 0.544i)3-s + (0.353 − 0.353i)4-s + (0.679 + 0.135i)6-s + (1.89 + 0.377i)7-s + (−0.135 + 0.326i)8-s + (−0.0157 − 0.0379i)9-s + (−0.301 + 1.51i)11-s + (−0.480 + 0.0955i)12-s + 0.870·13-s + (−1.34 + 0.267i)14-s − 0.250i·16-s + (−0.871 + 0.490i)17-s + (0.0205 + 0.0205i)18-s + (−0.0682 + 0.164i)19-s + ⋯ |
Λ(s)=(=(850s/2ΓC(s)L(s)(0.637−0.770i)Λ(2−s)
Λ(s)=(=(850s/2ΓC(s+1/2)L(s)(0.637−0.770i)Λ(1−s)
Degree: |
2 |
Conductor: |
850
= 2⋅52⋅17
|
Sign: |
0.637−0.770i
|
Analytic conductor: |
6.78728 |
Root analytic conductor: |
2.60524 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ850(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 850, ( :1/2), 0.637−0.770i)
|
Particular Values
L(1) |
≈ |
0.863166+0.406084i |
L(21) |
≈ |
0.863166+0.406084i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.923−0.382i)T |
| 5 | 1 |
| 17 | 1+(3.59−2.02i)T |
good | 3 | 1+(1.41+0.942i)T+(1.14+2.77i)T2 |
| 7 | 1+(−5.02−0.999i)T+(6.46+2.67i)T2 |
| 11 | 1+(0.999−5.02i)T+(−10.1−4.20i)T2 |
| 13 | 1−3.13T+13T2 |
| 19 | 1+(0.297−0.718i)T+(−13.4−13.4i)T2 |
| 23 | 1+(0.327+0.489i)T+(−8.80+21.2i)T2 |
| 29 | 1+(1.78−2.66i)T+(−11.0−26.7i)T2 |
| 31 | 1+(0.00940+0.0472i)T+(−28.6+11.8i)T2 |
| 37 | 1+(−1.22+1.83i)T+(−14.1−34.1i)T2 |
| 41 | 1+(−0.774−1.15i)T+(−15.6+37.8i)T2 |
| 43 | 1+(2.55+1.05i)T+(30.4+30.4i)T2 |
| 47 | 1−1.90iT−47T2 |
| 53 | 1+(−4.43−10.6i)T+(−37.4+37.4i)T2 |
| 59 | 1+(−2.75+1.14i)T+(41.7−41.7i)T2 |
| 61 | 1+(8.20−5.48i)T+(23.3−56.3i)T2 |
| 67 | 1+(−7.07−7.07i)T+67iT2 |
| 71 | 1+(−7.55+1.50i)T+(65.5−27.1i)T2 |
| 73 | 1+(7.03−1.39i)T+(67.4−27.9i)T2 |
| 79 | 1+(−9.46−1.88i)T+(72.9+30.2i)T2 |
| 83 | 1+(−15.6+6.48i)T+(58.6−58.6i)T2 |
| 89 | 1+(−5.07+5.07i)T−89iT2 |
| 97 | 1+(1.77−0.353i)T+(89.6−37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.60121926053717449205217242800, −9.275996157774977522275234134958, −8.528721685681358941438101621186, −7.71989102152843851387737312590, −6.99528342544667364460477575504, −6.02096759732494127148846282996, −5.18988598613300056556348426949, −4.29410555821626699760728847639, −2.13500671523746053300051050288, −1.33151420697606896818492962723,
0.71803945126421930112274718240, 2.14258752055984169883396487528, 3.74072341682250584046313996626, 4.80272419705213370071599262041, 5.53314417873792835756086463903, 6.57633861813023007818487222384, 7.954722145459064834193418693674, 8.258629397643026973100692061127, 9.184332951834521324475775178483, 10.46310833408983131513373863805