L(s) = 1 | + (−0.923 + 0.382i)2-s + (−1.41 − 0.942i)3-s + (0.707 − 0.707i)4-s + (1.66 + 0.330i)6-s + (5.02 + 0.999i)7-s + (−0.382 + 0.923i)8-s + (−0.0471 − 0.113i)9-s + (−0.999 + 5.02i)11-s + (−1.66 + 0.330i)12-s + 3.13·13-s + (−5.02 + 0.999i)14-s − i·16-s + (−3.59 + 2.02i)17-s + (0.0871 + 0.0871i)18-s + (−0.297 + 0.718i)19-s + ⋯ |
L(s) = 1 | + (−0.653 + 0.270i)2-s + (−0.814 − 0.544i)3-s + (0.353 − 0.353i)4-s + (0.679 + 0.135i)6-s + (1.89 + 0.377i)7-s + (−0.135 + 0.326i)8-s + (−0.0157 − 0.0379i)9-s + (−0.301 + 1.51i)11-s + (−0.480 + 0.0955i)12-s + 0.870·13-s + (−1.34 + 0.267i)14-s − 0.250i·16-s + (−0.871 + 0.490i)17-s + (0.0205 + 0.0205i)18-s + (−0.0682 + 0.164i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.637 - 0.770i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.637 - 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.863166 + 0.406084i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.863166 + 0.406084i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.923 - 0.382i)T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (3.59 - 2.02i)T \) |
good | 3 | \( 1 + (1.41 + 0.942i)T + (1.14 + 2.77i)T^{2} \) |
| 7 | \( 1 + (-5.02 - 0.999i)T + (6.46 + 2.67i)T^{2} \) |
| 11 | \( 1 + (0.999 - 5.02i)T + (-10.1 - 4.20i)T^{2} \) |
| 13 | \( 1 - 3.13T + 13T^{2} \) |
| 19 | \( 1 + (0.297 - 0.718i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (0.327 + 0.489i)T + (-8.80 + 21.2i)T^{2} \) |
| 29 | \( 1 + (1.78 - 2.66i)T + (-11.0 - 26.7i)T^{2} \) |
| 31 | \( 1 + (0.00940 + 0.0472i)T + (-28.6 + 11.8i)T^{2} \) |
| 37 | \( 1 + (-1.22 + 1.83i)T + (-14.1 - 34.1i)T^{2} \) |
| 41 | \( 1 + (-0.774 - 1.15i)T + (-15.6 + 37.8i)T^{2} \) |
| 43 | \( 1 + (2.55 + 1.05i)T + (30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 - 1.90iT - 47T^{2} \) |
| 53 | \( 1 + (-4.43 - 10.6i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-2.75 + 1.14i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (8.20 - 5.48i)T + (23.3 - 56.3i)T^{2} \) |
| 67 | \( 1 + (-7.07 - 7.07i)T + 67iT^{2} \) |
| 71 | \( 1 + (-7.55 + 1.50i)T + (65.5 - 27.1i)T^{2} \) |
| 73 | \( 1 + (7.03 - 1.39i)T + (67.4 - 27.9i)T^{2} \) |
| 79 | \( 1 + (-9.46 - 1.88i)T + (72.9 + 30.2i)T^{2} \) |
| 83 | \( 1 + (-15.6 + 6.48i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-5.07 + 5.07i)T - 89iT^{2} \) |
| 97 | \( 1 + (1.77 - 0.353i)T + (89.6 - 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60121926053717449205217242800, −9.275996157774977522275234134958, −8.528721685681358941438101621186, −7.71989102152843851387737312590, −6.99528342544667364460477575504, −6.02096759732494127148846282996, −5.18988598613300056556348426949, −4.29410555821626699760728847639, −2.13500671523746053300051050288, −1.33151420697606896818492962723,
0.71803945126421930112274718240, 2.14258752055984169883396487528, 3.74072341682250584046313996626, 4.80272419705213370071599262041, 5.53314417873792835756086463903, 6.57633861813023007818487222384, 7.954722145459064834193418693674, 8.258629397643026973100692061127, 9.184332951834521324475775178483, 10.46310833408983131513373863805