L(s) = 1 | + (−0.923 + 0.382i)2-s + (0.628 + 0.419i)3-s + (0.707 − 0.707i)4-s + (−0.741 − 0.147i)6-s + (−1.27 − 0.252i)7-s + (−0.382 + 0.923i)8-s + (−0.929 − 2.24i)9-s + (−0.546 + 2.74i)11-s + (0.741 − 0.147i)12-s − 4.10·13-s + (1.27 − 0.252i)14-s − i·16-s + (2.50 − 3.27i)17-s + (1.71 + 1.71i)18-s + (1.17 − 2.83i)19-s + ⋯ |
L(s) = 1 | + (−0.653 + 0.270i)2-s + (0.362 + 0.242i)3-s + (0.353 − 0.353i)4-s + (−0.302 − 0.0601i)6-s + (−0.480 − 0.0955i)7-s + (−0.135 + 0.326i)8-s + (−0.309 − 0.747i)9-s + (−0.164 + 0.827i)11-s + (0.213 − 0.0425i)12-s − 1.13·13-s + (0.339 − 0.0675i)14-s − 0.250i·16-s + (0.607 − 0.794i)17-s + (0.404 + 0.404i)18-s + (0.269 − 0.650i)19-s + ⋯ |
Λ(s)=(=(850s/2ΓC(s)L(s)(−0.281+0.959i)Λ(2−s)
Λ(s)=(=(850s/2ΓC(s+1/2)L(s)(−0.281+0.959i)Λ(1−s)
Degree: |
2 |
Conductor: |
850
= 2⋅52⋅17
|
Sign: |
−0.281+0.959i
|
Analytic conductor: |
6.78728 |
Root analytic conductor: |
2.60524 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ850(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 850, ( :1/2), −0.281+0.959i)
|
Particular Values
L(1) |
≈ |
0.319472−0.426693i |
L(21) |
≈ |
0.319472−0.426693i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.923−0.382i)T |
| 5 | 1 |
| 17 | 1+(−2.50+3.27i)T |
good | 3 | 1+(−0.628−0.419i)T+(1.14+2.77i)T2 |
| 7 | 1+(1.27+0.252i)T+(6.46+2.67i)T2 |
| 11 | 1+(0.546−2.74i)T+(−10.1−4.20i)T2 |
| 13 | 1+4.10T+13T2 |
| 19 | 1+(−1.17+2.83i)T+(−13.4−13.4i)T2 |
| 23 | 1+(4.19+6.28i)T+(−8.80+21.2i)T2 |
| 29 | 1+(3.51−5.26i)T+(−11.0−26.7i)T2 |
| 31 | 1+(0.355+1.78i)T+(−28.6+11.8i)T2 |
| 37 | 1+(0.190−0.284i)T+(−14.1−34.1i)T2 |
| 41 | 1+(1.73+2.59i)T+(−15.6+37.8i)T2 |
| 43 | 1+(7.35+3.04i)T+(30.4+30.4i)T2 |
| 47 | 1+7.90iT−47T2 |
| 53 | 1+(−4.29−10.3i)T+(−37.4+37.4i)T2 |
| 59 | 1+(−9.44+3.91i)T+(41.7−41.7i)T2 |
| 61 | 1+(−5.15+3.44i)T+(23.3−56.3i)T2 |
| 67 | 1+(0.944+0.944i)T+67iT2 |
| 71 | 1+(7.94−1.58i)T+(65.5−27.1i)T2 |
| 73 | 1+(1.75−0.349i)T+(67.4−27.9i)T2 |
| 79 | 1+(16.2+3.23i)T+(72.9+30.2i)T2 |
| 83 | 1+(−3.31+1.37i)T+(58.6−58.6i)T2 |
| 89 | 1+(−7.01+7.01i)T−89iT2 |
| 97 | 1+(8.19−1.63i)T+(89.6−37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.893253682732586701497368943587, −9.171688406773251078255812981173, −8.386675501295990192293901100676, −7.25975263092855914486360377308, −6.83461752961745385717865530140, −5.60349489244370163774014540937, −4.59914267834896282871534134212, −3.27456221313210193703170769686, −2.24578239173049638906999663725, −0.28871482091835882311999453139,
1.68429561528171041505709818085, 2.81105566894806176927570429018, 3.73892693970953727838659584573, 5.30936889095665157263751183274, 6.12290161823223649146936682143, 7.39783660627566440304490188810, 7.952612767480331888778209347813, 8.644956482135533923505753724546, 9.825077510270002715582173028513, 10.08672796266128276833229751383