L(s) = 1 | + (0.923 + 0.382i)2-s + (−0.530 − 0.793i)3-s + (0.707 + 0.707i)4-s + (−0.186 − 0.935i)6-s + (−0.736 − 3.70i)7-s + (0.382 + 0.923i)8-s + (0.799 − 1.93i)9-s + (−2.74 + 0.546i)11-s + (0.186 − 0.935i)12-s − 5.74·13-s + (0.736 − 3.70i)14-s + i·16-s + (−3.33 − 2.41i)17-s + (1.47 − 1.47i)18-s + (0.119 + 0.288i)19-s + ⋯ |
L(s) = 1 | + (0.653 + 0.270i)2-s + (−0.306 − 0.458i)3-s + (0.353 + 0.353i)4-s + (−0.0760 − 0.382i)6-s + (−0.278 − 1.39i)7-s + (0.135 + 0.326i)8-s + (0.266 − 0.643i)9-s + (−0.828 + 0.164i)11-s + (0.0537 − 0.270i)12-s − 1.59·13-s + (0.196 − 0.989i)14-s + 0.250i·16-s + (−0.809 − 0.586i)17-s + (0.348 − 0.348i)18-s + (0.0273 + 0.0660i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.509 + 0.860i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.509 + 0.860i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.610974 - 1.07243i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.610974 - 1.07243i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.923 - 0.382i)T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (3.33 + 2.41i)T \) |
good | 3 | \( 1 + (0.530 + 0.793i)T + (-1.14 + 2.77i)T^{2} \) |
| 7 | \( 1 + (0.736 + 3.70i)T + (-6.46 + 2.67i)T^{2} \) |
| 11 | \( 1 + (2.74 - 0.546i)T + (10.1 - 4.20i)T^{2} \) |
| 13 | \( 1 + 5.74T + 13T^{2} \) |
| 19 | \( 1 + (-0.119 - 0.288i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (-3.97 - 2.65i)T + (8.80 + 21.2i)T^{2} \) |
| 29 | \( 1 + (-0.463 + 0.309i)T + (11.0 - 26.7i)T^{2} \) |
| 31 | \( 1 + (5.00 + 0.994i)T + (28.6 + 11.8i)T^{2} \) |
| 37 | \( 1 + (-8.56 + 5.72i)T + (14.1 - 34.1i)T^{2} \) |
| 41 | \( 1 + (7.70 + 5.15i)T + (15.6 + 37.8i)T^{2} \) |
| 43 | \( 1 + (-8.32 + 3.44i)T + (30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 - 5.61iT - 47T^{2} \) |
| 53 | \( 1 + (-2.52 + 6.08i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (-3.14 - 1.30i)T + (41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (-5.67 + 8.48i)T + (-23.3 - 56.3i)T^{2} \) |
| 67 | \( 1 + (1.94 - 1.94i)T - 67iT^{2} \) |
| 71 | \( 1 + (-0.782 + 3.93i)T + (-65.5 - 27.1i)T^{2} \) |
| 73 | \( 1 + (-0.167 + 0.841i)T + (-67.4 - 27.9i)T^{2} \) |
| 79 | \( 1 + (0.872 + 4.38i)T + (-72.9 + 30.2i)T^{2} \) |
| 83 | \( 1 + (-1.36 - 0.565i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (-7.49 - 7.49i)T + 89iT^{2} \) |
| 97 | \( 1 + (-3.04 + 15.3i)T + (-89.6 - 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.965692575567935888145506754377, −9.187391581330768265404139667874, −7.55504975086112087683345611955, −7.33913118774258279613577546589, −6.61754552371347711656516196507, −5.42299641530745659074735238721, −4.55903818714632528851569676965, −3.60248807865581712764979721009, −2.31211877845741735807875319646, −0.46344320223444250675836865542,
2.22612412342876828070418106358, 2.83590558810903969802851839778, 4.43347630457304102977826770628, 5.10413925523247121901106264235, 5.76555029380789679621879622492, 6.86276155048658872241105772435, 7.906480734458418218782270047463, 8.941471852678795167157901073615, 9.823749792457605927145128987725, 10.52118788088564593958563169982