L(s) = 1 | + (0.923 + 0.382i)2-s + (1.49 + 2.23i)3-s + (0.707 + 0.707i)4-s + (0.524 + 2.63i)6-s + (0.501 + 2.52i)7-s + (0.382 + 0.923i)8-s + (−1.61 + 3.89i)9-s + (−2.07 + 0.412i)11-s + (−0.524 + 2.63i)12-s + 0.669·13-s + (−0.501 + 2.52i)14-s + i·16-s + (3.66 − 1.88i)17-s + (−2.97 + 2.97i)18-s + (−2.43 − 5.87i)19-s + ⋯ |
L(s) = 1 | + (0.653 + 0.270i)2-s + (0.861 + 1.28i)3-s + (0.353 + 0.353i)4-s + (0.213 + 1.07i)6-s + (0.189 + 0.952i)7-s + (0.135 + 0.326i)8-s + (−0.537 + 1.29i)9-s + (−0.625 + 0.124i)11-s + (−0.151 + 0.760i)12-s + 0.185·13-s + (−0.133 + 0.673i)14-s + 0.250i·16-s + (0.889 − 0.455i)17-s + (−0.702 + 0.702i)18-s + (−0.557 − 1.34i)19-s + ⋯ |
Λ(s)=(=(850s/2ΓC(s)L(s)(−0.535−0.844i)Λ(2−s)
Λ(s)=(=(850s/2ΓC(s+1/2)L(s)(−0.535−0.844i)Λ(1−s)
Degree: |
2 |
Conductor: |
850
= 2⋅52⋅17
|
Sign: |
−0.535−0.844i
|
Analytic conductor: |
6.78728 |
Root analytic conductor: |
2.60524 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ850(507,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 850, ( :1/2), −0.535−0.844i)
|
Particular Values
L(1) |
≈ |
1.42834+2.59843i |
L(21) |
≈ |
1.42834+2.59843i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.923−0.382i)T |
| 5 | 1 |
| 17 | 1+(−3.66+1.88i)T |
good | 3 | 1+(−1.49−2.23i)T+(−1.14+2.77i)T2 |
| 7 | 1+(−0.501−2.52i)T+(−6.46+2.67i)T2 |
| 11 | 1+(2.07−0.412i)T+(10.1−4.20i)T2 |
| 13 | 1−0.669T+13T2 |
| 19 | 1+(2.43+5.87i)T+(−13.4+13.4i)T2 |
| 23 | 1+(4.02+2.68i)T+(8.80+21.2i)T2 |
| 29 | 1+(−1.33+0.894i)T+(11.0−26.7i)T2 |
| 31 | 1+(−8.76−1.74i)T+(28.6+11.8i)T2 |
| 37 | 1+(7.79−5.20i)T+(14.1−34.1i)T2 |
| 41 | 1+(−1.26−0.844i)T+(15.6+37.8i)T2 |
| 43 | 1+(−6.08+2.52i)T+(30.4−30.4i)T2 |
| 47 | 1−8.92iT−47T2 |
| 53 | 1+(−4.10+9.91i)T+(−37.4−37.4i)T2 |
| 59 | 1+(3.21+1.33i)T+(41.7+41.7i)T2 |
| 61 | 1+(−5.81+8.70i)T+(−23.3−56.3i)T2 |
| 67 | 1+(7.04−7.04i)T−67iT2 |
| 71 | 1+(1.31−6.58i)T+(−65.5−27.1i)T2 |
| 73 | 1+(2.39−12.0i)T+(−67.4−27.9i)T2 |
| 79 | 1+(−1.27−6.40i)T+(−72.9+30.2i)T2 |
| 83 | 1+(11.2+4.65i)T+(58.6+58.6i)T2 |
| 89 | 1+(0.324+0.324i)T+89iT2 |
| 97 | 1+(−2.88+14.4i)T+(−89.6−37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28717102847406027432529793228, −9.690246092514426844928423864548, −8.551283212945521138729627171165, −8.341419033779014397826996683977, −7.01656717141563763329987202254, −5.81607119529733911312968378776, −4.94280358973915730396721779192, −4.30131773258330439279429854816, −3.05772072150203068652615696416, −2.46924244037658598213693823765,
1.15074717131965045021278800141, 2.16483409359094465297433092111, 3.33613728887238231395476663185, 4.18411634768745263737432639841, 5.65264211067283952117177061543, 6.44429540371150134642826892660, 7.59397529836967791001760648638, 7.81164462387593341005574612160, 8.826566542968861205157926968887, 10.23567222889493110883784403602