Properties

Label 2-850-85.82-c1-0-12
Degree 22
Conductor 850850
Sign 0.5350.844i-0.535 - 0.844i
Analytic cond. 6.787286.78728
Root an. cond. 2.605242.60524
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.923 + 0.382i)2-s + (1.49 + 2.23i)3-s + (0.707 + 0.707i)4-s + (0.524 + 2.63i)6-s + (0.501 + 2.52i)7-s + (0.382 + 0.923i)8-s + (−1.61 + 3.89i)9-s + (−2.07 + 0.412i)11-s + (−0.524 + 2.63i)12-s + 0.669·13-s + (−0.501 + 2.52i)14-s + i·16-s + (3.66 − 1.88i)17-s + (−2.97 + 2.97i)18-s + (−2.43 − 5.87i)19-s + ⋯
L(s)  = 1  + (0.653 + 0.270i)2-s + (0.861 + 1.28i)3-s + (0.353 + 0.353i)4-s + (0.213 + 1.07i)6-s + (0.189 + 0.952i)7-s + (0.135 + 0.326i)8-s + (−0.537 + 1.29i)9-s + (−0.625 + 0.124i)11-s + (−0.151 + 0.760i)12-s + 0.185·13-s + (−0.133 + 0.673i)14-s + 0.250i·16-s + (0.889 − 0.455i)17-s + (−0.702 + 0.702i)18-s + (−0.557 − 1.34i)19-s + ⋯

Functional equation

Λ(s)=(850s/2ΓC(s)L(s)=((0.5350.844i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.535 - 0.844i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(850s/2ΓC(s+1/2)L(s)=((0.5350.844i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.535 - 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 850850    =    252172 \cdot 5^{2} \cdot 17
Sign: 0.5350.844i-0.535 - 0.844i
Analytic conductor: 6.787286.78728
Root analytic conductor: 2.605242.60524
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ850(507,)\chi_{850} (507, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 850, ( :1/2), 0.5350.844i)(2,\ 850,\ (\ :1/2),\ -0.535 - 0.844i)

Particular Values

L(1)L(1) \approx 1.42834+2.59843i1.42834 + 2.59843i
L(12)L(\frac12) \approx 1.42834+2.59843i1.42834 + 2.59843i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
5 1 1
17 1+(3.66+1.88i)T 1 + (-3.66 + 1.88i)T
good3 1+(1.492.23i)T+(1.14+2.77i)T2 1 + (-1.49 - 2.23i)T + (-1.14 + 2.77i)T^{2}
7 1+(0.5012.52i)T+(6.46+2.67i)T2 1 + (-0.501 - 2.52i)T + (-6.46 + 2.67i)T^{2}
11 1+(2.070.412i)T+(10.14.20i)T2 1 + (2.07 - 0.412i)T + (10.1 - 4.20i)T^{2}
13 10.669T+13T2 1 - 0.669T + 13T^{2}
19 1+(2.43+5.87i)T+(13.4+13.4i)T2 1 + (2.43 + 5.87i)T + (-13.4 + 13.4i)T^{2}
23 1+(4.02+2.68i)T+(8.80+21.2i)T2 1 + (4.02 + 2.68i)T + (8.80 + 21.2i)T^{2}
29 1+(1.33+0.894i)T+(11.026.7i)T2 1 + (-1.33 + 0.894i)T + (11.0 - 26.7i)T^{2}
31 1+(8.761.74i)T+(28.6+11.8i)T2 1 + (-8.76 - 1.74i)T + (28.6 + 11.8i)T^{2}
37 1+(7.795.20i)T+(14.134.1i)T2 1 + (7.79 - 5.20i)T + (14.1 - 34.1i)T^{2}
41 1+(1.260.844i)T+(15.6+37.8i)T2 1 + (-1.26 - 0.844i)T + (15.6 + 37.8i)T^{2}
43 1+(6.08+2.52i)T+(30.430.4i)T2 1 + (-6.08 + 2.52i)T + (30.4 - 30.4i)T^{2}
47 18.92iT47T2 1 - 8.92iT - 47T^{2}
53 1+(4.10+9.91i)T+(37.437.4i)T2 1 + (-4.10 + 9.91i)T + (-37.4 - 37.4i)T^{2}
59 1+(3.21+1.33i)T+(41.7+41.7i)T2 1 + (3.21 + 1.33i)T + (41.7 + 41.7i)T^{2}
61 1+(5.81+8.70i)T+(23.356.3i)T2 1 + (-5.81 + 8.70i)T + (-23.3 - 56.3i)T^{2}
67 1+(7.047.04i)T67iT2 1 + (7.04 - 7.04i)T - 67iT^{2}
71 1+(1.316.58i)T+(65.527.1i)T2 1 + (1.31 - 6.58i)T + (-65.5 - 27.1i)T^{2}
73 1+(2.3912.0i)T+(67.427.9i)T2 1 + (2.39 - 12.0i)T + (-67.4 - 27.9i)T^{2}
79 1+(1.276.40i)T+(72.9+30.2i)T2 1 + (-1.27 - 6.40i)T + (-72.9 + 30.2i)T^{2}
83 1+(11.2+4.65i)T+(58.6+58.6i)T2 1 + (11.2 + 4.65i)T + (58.6 + 58.6i)T^{2}
89 1+(0.324+0.324i)T+89iT2 1 + (0.324 + 0.324i)T + 89iT^{2}
97 1+(2.88+14.4i)T+(89.637.1i)T2 1 + (-2.88 + 14.4i)T + (-89.6 - 37.1i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.28717102847406027432529793228, −9.690246092514426844928423864548, −8.551283212945521138729627171165, −8.341419033779014397826996683977, −7.01656717141563763329987202254, −5.81607119529733911312968378776, −4.94280358973915730396721779192, −4.30131773258330439279429854816, −3.05772072150203068652615696416, −2.46924244037658598213693823765, 1.15074717131965045021278800141, 2.16483409359094465297433092111, 3.33613728887238231395476663185, 4.18411634768745263737432639841, 5.65264211067283952117177061543, 6.44429540371150134642826892660, 7.59397529836967791001760648638, 7.81164462387593341005574612160, 8.826566542968861205157926968887, 10.23567222889493110883784403602

Graph of the ZZ-function along the critical line