L(s) = 1 | + (0.923 + 0.382i)2-s + (1.49 + 2.23i)3-s + (0.707 + 0.707i)4-s + (0.524 + 2.63i)6-s + (0.501 + 2.52i)7-s + (0.382 + 0.923i)8-s + (−1.61 + 3.89i)9-s + (−2.07 + 0.412i)11-s + (−0.524 + 2.63i)12-s + 0.669·13-s + (−0.501 + 2.52i)14-s + i·16-s + (3.66 − 1.88i)17-s + (−2.97 + 2.97i)18-s + (−2.43 − 5.87i)19-s + ⋯ |
L(s) = 1 | + (0.653 + 0.270i)2-s + (0.861 + 1.28i)3-s + (0.353 + 0.353i)4-s + (0.213 + 1.07i)6-s + (0.189 + 0.952i)7-s + (0.135 + 0.326i)8-s + (−0.537 + 1.29i)9-s + (−0.625 + 0.124i)11-s + (−0.151 + 0.760i)12-s + 0.185·13-s + (−0.133 + 0.673i)14-s + 0.250i·16-s + (0.889 − 0.455i)17-s + (−0.702 + 0.702i)18-s + (−0.557 − 1.34i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.535 - 0.844i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.535 - 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42834 + 2.59843i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42834 + 2.59843i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.923 - 0.382i)T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (-3.66 + 1.88i)T \) |
good | 3 | \( 1 + (-1.49 - 2.23i)T + (-1.14 + 2.77i)T^{2} \) |
| 7 | \( 1 + (-0.501 - 2.52i)T + (-6.46 + 2.67i)T^{2} \) |
| 11 | \( 1 + (2.07 - 0.412i)T + (10.1 - 4.20i)T^{2} \) |
| 13 | \( 1 - 0.669T + 13T^{2} \) |
| 19 | \( 1 + (2.43 + 5.87i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (4.02 + 2.68i)T + (8.80 + 21.2i)T^{2} \) |
| 29 | \( 1 + (-1.33 + 0.894i)T + (11.0 - 26.7i)T^{2} \) |
| 31 | \( 1 + (-8.76 - 1.74i)T + (28.6 + 11.8i)T^{2} \) |
| 37 | \( 1 + (7.79 - 5.20i)T + (14.1 - 34.1i)T^{2} \) |
| 41 | \( 1 + (-1.26 - 0.844i)T + (15.6 + 37.8i)T^{2} \) |
| 43 | \( 1 + (-6.08 + 2.52i)T + (30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 - 8.92iT - 47T^{2} \) |
| 53 | \( 1 + (-4.10 + 9.91i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (3.21 + 1.33i)T + (41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (-5.81 + 8.70i)T + (-23.3 - 56.3i)T^{2} \) |
| 67 | \( 1 + (7.04 - 7.04i)T - 67iT^{2} \) |
| 71 | \( 1 + (1.31 - 6.58i)T + (-65.5 - 27.1i)T^{2} \) |
| 73 | \( 1 + (2.39 - 12.0i)T + (-67.4 - 27.9i)T^{2} \) |
| 79 | \( 1 + (-1.27 - 6.40i)T + (-72.9 + 30.2i)T^{2} \) |
| 83 | \( 1 + (11.2 + 4.65i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (0.324 + 0.324i)T + 89iT^{2} \) |
| 97 | \( 1 + (-2.88 + 14.4i)T + (-89.6 - 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28717102847406027432529793228, −9.690246092514426844928423864548, −8.551283212945521138729627171165, −8.341419033779014397826996683977, −7.01656717141563763329987202254, −5.81607119529733911312968378776, −4.94280358973915730396721779192, −4.30131773258330439279429854816, −3.05772072150203068652615696416, −2.46924244037658598213693823765,
1.15074717131965045021278800141, 2.16483409359094465297433092111, 3.33613728887238231395476663185, 4.18411634768745263737432639841, 5.65264211067283952117177061543, 6.44429540371150134642826892660, 7.59397529836967791001760648638, 7.81164462387593341005574612160, 8.826566542968861205157926968887, 10.23567222889493110883784403602