L(s) = 1 | + (−0.382 + 0.923i)2-s + (−0.372 + 1.87i)3-s + (−0.707 − 0.707i)4-s + (−1.58 − 1.06i)6-s + (0.930 + 0.622i)7-s + (0.923 − 0.382i)8-s + (−0.596 − 0.247i)9-s + (−1.86 + 2.79i)11-s + (1.58 − 1.06i)12-s + 1.47·13-s + (−0.930 + 0.622i)14-s + i·16-s + (−3.90 + 1.32i)17-s + (0.456 − 0.456i)18-s + (−4.07 + 1.68i)19-s + ⋯ |
L(s) = 1 | + (−0.270 + 0.653i)2-s + (−0.215 + 1.08i)3-s + (−0.353 − 0.353i)4-s + (−0.648 − 0.433i)6-s + (0.351 + 0.235i)7-s + (0.326 − 0.135i)8-s + (−0.198 − 0.0823i)9-s + (−0.562 + 0.842i)11-s + (0.458 − 0.306i)12-s + 0.409·13-s + (−0.248 + 0.166i)14-s + 0.250i·16-s + (−0.946 + 0.322i)17-s + (0.107 − 0.107i)18-s + (−0.934 + 0.386i)19-s + ⋯ |
Λ(s)=(=(850s/2ΓC(s)L(s)(−0.918+0.396i)Λ(2−s)
Λ(s)=(=(850s/2ΓC(s+1/2)L(s)(−0.918+0.396i)Λ(1−s)
Degree: |
2 |
Conductor: |
850
= 2⋅52⋅17
|
Sign: |
−0.918+0.396i
|
Analytic conductor: |
6.78728 |
Root analytic conductor: |
2.60524 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ850(607,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 850, ( :1/2), −0.918+0.396i)
|
Particular Values
L(1) |
≈ |
0.171611−0.830378i |
L(21) |
≈ |
0.171611−0.830378i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.382−0.923i)T |
| 5 | 1 |
| 17 | 1+(3.90−1.32i)T |
good | 3 | 1+(0.372−1.87i)T+(−2.77−1.14i)T2 |
| 7 | 1+(−0.930−0.622i)T+(2.67+6.46i)T2 |
| 11 | 1+(1.86−2.79i)T+(−4.20−10.1i)T2 |
| 13 | 1−1.47T+13T2 |
| 19 | 1+(4.07−1.68i)T+(13.4−13.4i)T2 |
| 23 | 1+(−2.92+0.581i)T+(21.2−8.80i)T2 |
| 29 | 1+(−3.34−0.664i)T+(26.7+11.0i)T2 |
| 31 | 1+(−2.94−4.41i)T+(−11.8+28.6i)T2 |
| 37 | 1+(8.28+1.64i)T+(34.1+14.1i)T2 |
| 41 | 1+(10.6−2.11i)T+(37.8−15.6i)T2 |
| 43 | 1+(2.55+6.16i)T+(−30.4+30.4i)T2 |
| 47 | 1−6.49iT−47T2 |
| 53 | 1+(−5.24−2.17i)T+(37.4+37.4i)T2 |
| 59 | 1+(−0.784+1.89i)T+(−41.7−41.7i)T2 |
| 61 | 1+(−0.266−1.34i)T+(−56.3+23.3i)T2 |
| 67 | 1+(−7.14+7.14i)T−67iT2 |
| 71 | 1+(−1.30+0.874i)T+(27.1−65.5i)T2 |
| 73 | 1+(−10.5+7.04i)T+(27.9−67.4i)T2 |
| 79 | 1+(6.00+4.01i)T+(30.2+72.9i)T2 |
| 83 | 1+(4.89−11.8i)T+(−58.6−58.6i)T2 |
| 89 | 1+(5.20+5.20i)T+89iT2 |
| 97 | 1+(−8.14+5.44i)T+(37.1−89.6i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.43917689779655176463884475097, −9.942662735310211758226382441430, −8.823233243804582810106721422184, −8.395034685197999485264642326131, −7.16774016508325371782183417107, −6.38857050764620712037757894607, −5.11854059658977747353921019134, −4.73674732517538653453143547820, −3.64883972648396767820110836577, −1.93536642243602029178715292055,
0.46179083225507098873941451878, 1.72119195383946792669663530080, 2.81986309136565615235299307770, 4.13644507921078765424932124404, 5.25386610596044527633538069625, 6.48450445400904076137782544217, 7.08538040358457892148401942445, 8.275239222781451963664594688728, 8.573793926897503081026415027171, 9.848806232209406997357720888474