L(s) = 1 | + (−1.37 + 0.719i)2-s + (−0.554 + 0.803i)3-s + (0.223 − 0.324i)4-s + (0.478 + 0.692i)5-s + (0.181 − 1.49i)6-s + (0.117 + 0.969i)7-s + (0.299 − 2.46i)8-s + (0.726 + 1.91i)9-s + (−1.15 − 0.605i)10-s + (−0.555 − 4.57i)11-s + (0.136 + 0.359i)12-s + 2.58·13-s + (−0.858 − 1.24i)14-s − 0.821·15-s + (1.64 + 4.33i)16-s + (7.12 − 1.75i)17-s + ⋯ |
L(s) = 1 | + (−0.968 + 0.508i)2-s + (−0.320 + 0.463i)3-s + (0.111 − 0.162i)4-s + (0.213 + 0.309i)5-s + (0.0742 − 0.611i)6-s + (0.0444 + 0.366i)7-s + (0.105 − 0.872i)8-s + (0.242 + 0.638i)9-s + (−0.364 − 0.191i)10-s + (−0.167 − 1.37i)11-s + (0.0393 + 0.103i)12-s + 0.717·13-s + (−0.229 − 0.332i)14-s − 0.212·15-s + (0.410 + 1.08i)16-s + (1.72 − 0.425i)17-s + ⋯ |
Λ(s)=(=(859s/2ΓC(s)L(s)(0.311−0.950i)Λ(2−s)
Λ(s)=(=(859s/2ΓC(s+1/2)L(s)(0.311−0.950i)Λ(1−s)
Degree: |
2 |
Conductor: |
859
|
Sign: |
0.311−0.950i
|
Analytic conductor: |
6.85914 |
Root analytic conductor: |
2.61899 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ859(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 859, ( :1/2), 0.311−0.950i)
|
Particular Values
L(1) |
≈ |
0.732048+0.530512i |
L(21) |
≈ |
0.732048+0.530512i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 859 | 1+(−22.1−19.2i)T |
good | 2 | 1+(1.37−0.719i)T+(1.13−1.64i)T2 |
| 3 | 1+(0.554−0.803i)T+(−1.06−2.80i)T2 |
| 5 | 1+(−0.478−0.692i)T+(−1.77+4.67i)T2 |
| 7 | 1+(−0.117−0.969i)T+(−6.79+1.67i)T2 |
| 11 | 1+(0.555+4.57i)T+(−10.6+2.63i)T2 |
| 13 | 1−2.58T+13T2 |
| 17 | 1+(−7.12+1.75i)T+(15.0−7.90i)T2 |
| 19 | 1+0.113T+19T2 |
| 23 | 1+(−1.35−0.709i)T+(13.0+18.9i)T2 |
| 29 | 1+(−2.43+6.41i)T+(−21.7−19.2i)T2 |
| 31 | 1+(−6.69−5.93i)T+(3.73+30.7i)T2 |
| 37 | 1+(2.90+7.64i)T+(−27.6+24.5i)T2 |
| 41 | 1+(0.748−1.08i)T+(−14.5−38.3i)T2 |
| 43 | 1+3.79T+43T2 |
| 47 | 1+(5.64−5.00i)T+(5.66−46.6i)T2 |
| 53 | 1+(−8.70−2.14i)T+(46.9+24.6i)T2 |
| 59 | 1+(−3.67+1.92i)T+(33.5−48.5i)T2 |
| 61 | 1+7.94T+61T2 |
| 67 | 1+(−0.121−0.320i)T+(−50.1+44.4i)T2 |
| 71 | 1+(−12.1−2.98i)T+(62.8+32.9i)T2 |
| 73 | 1+(1.35−11.1i)T+(−70.8−17.4i)T2 |
| 79 | 1+(3.89−5.63i)T+(−28.0−73.8i)T2 |
| 83 | 1+(−1.59−13.1i)T+(−80.5+19.8i)T2 |
| 89 | 1+(5.66+1.39i)T+(78.8+41.3i)T2 |
| 97 | 1+(9.81−2.41i)T+(85.8−45.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20648082030122277013789406726, −9.547617975665443666959188560175, −8.390726567647743494759294978127, −8.165626726007702628712741199667, −7.03323395550288789295768303912, −6.04795639494841174694397677056, −5.31871583750931287454140306598, −3.97086455495975565485561509869, −2.89206635426169399097394116996, −0.950772013123686558563321334237,
0.988307189029650924524770206425, 1.70638433940474295705976126319, 3.33348652626468980786280989800, 4.72144524461135206433666750470, 5.64150002746572169873123010370, 6.75192261689519265804101820039, 7.59096865061430030013219150246, 8.437038786902136723517902288006, 9.338533644357968036090160856466, 10.06001126444314423468106498507