L(s) = 1 | + (−1.37 + 0.719i)2-s + (−0.554 + 0.803i)3-s + (0.223 − 0.324i)4-s + (0.478 + 0.692i)5-s + (0.181 − 1.49i)6-s + (0.117 + 0.969i)7-s + (0.299 − 2.46i)8-s + (0.726 + 1.91i)9-s + (−1.15 − 0.605i)10-s + (−0.555 − 4.57i)11-s + (0.136 + 0.359i)12-s + 2.58·13-s + (−0.858 − 1.24i)14-s − 0.821·15-s + (1.64 + 4.33i)16-s + (7.12 − 1.75i)17-s + ⋯ |
L(s) = 1 | + (−0.968 + 0.508i)2-s + (−0.320 + 0.463i)3-s + (0.111 − 0.162i)4-s + (0.213 + 0.309i)5-s + (0.0742 − 0.611i)6-s + (0.0444 + 0.366i)7-s + (0.105 − 0.872i)8-s + (0.242 + 0.638i)9-s + (−0.364 − 0.191i)10-s + (−0.167 − 1.37i)11-s + (0.0393 + 0.103i)12-s + 0.717·13-s + (−0.229 − 0.332i)14-s − 0.212·15-s + (0.410 + 1.08i)16-s + (1.72 − 0.425i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.311 - 0.950i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 859 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.311 - 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.732048 + 0.530512i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.732048 + 0.530512i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 859 | \( 1 + (-22.1 - 19.2i)T \) |
good | 2 | \( 1 + (1.37 - 0.719i)T + (1.13 - 1.64i)T^{2} \) |
| 3 | \( 1 + (0.554 - 0.803i)T + (-1.06 - 2.80i)T^{2} \) |
| 5 | \( 1 + (-0.478 - 0.692i)T + (-1.77 + 4.67i)T^{2} \) |
| 7 | \( 1 + (-0.117 - 0.969i)T + (-6.79 + 1.67i)T^{2} \) |
| 11 | \( 1 + (0.555 + 4.57i)T + (-10.6 + 2.63i)T^{2} \) |
| 13 | \( 1 - 2.58T + 13T^{2} \) |
| 17 | \( 1 + (-7.12 + 1.75i)T + (15.0 - 7.90i)T^{2} \) |
| 19 | \( 1 + 0.113T + 19T^{2} \) |
| 23 | \( 1 + (-1.35 - 0.709i)T + (13.0 + 18.9i)T^{2} \) |
| 29 | \( 1 + (-2.43 + 6.41i)T + (-21.7 - 19.2i)T^{2} \) |
| 31 | \( 1 + (-6.69 - 5.93i)T + (3.73 + 30.7i)T^{2} \) |
| 37 | \( 1 + (2.90 + 7.64i)T + (-27.6 + 24.5i)T^{2} \) |
| 41 | \( 1 + (0.748 - 1.08i)T + (-14.5 - 38.3i)T^{2} \) |
| 43 | \( 1 + 3.79T + 43T^{2} \) |
| 47 | \( 1 + (5.64 - 5.00i)T + (5.66 - 46.6i)T^{2} \) |
| 53 | \( 1 + (-8.70 - 2.14i)T + (46.9 + 24.6i)T^{2} \) |
| 59 | \( 1 + (-3.67 + 1.92i)T + (33.5 - 48.5i)T^{2} \) |
| 61 | \( 1 + 7.94T + 61T^{2} \) |
| 67 | \( 1 + (-0.121 - 0.320i)T + (-50.1 + 44.4i)T^{2} \) |
| 71 | \( 1 + (-12.1 - 2.98i)T + (62.8 + 32.9i)T^{2} \) |
| 73 | \( 1 + (1.35 - 11.1i)T + (-70.8 - 17.4i)T^{2} \) |
| 79 | \( 1 + (3.89 - 5.63i)T + (-28.0 - 73.8i)T^{2} \) |
| 83 | \( 1 + (-1.59 - 13.1i)T + (-80.5 + 19.8i)T^{2} \) |
| 89 | \( 1 + (5.66 + 1.39i)T + (78.8 + 41.3i)T^{2} \) |
| 97 | \( 1 + (9.81 - 2.41i)T + (85.8 - 45.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20648082030122277013789406726, −9.547617975665443666959188560175, −8.390726567647743494759294978127, −8.165626726007702628712741199667, −7.03323395550288789295768303912, −6.04795639494841174694397677056, −5.31871583750931287454140306598, −3.97086455495975565485561509869, −2.89206635426169399097394116996, −0.950772013123686558563321334237,
0.988307189029650924524770206425, 1.70638433940474295705976126319, 3.33348652626468980786280989800, 4.72144524461135206433666750470, 5.64150002746572169873123010370, 6.75192261689519265804101820039, 7.59096865061430030013219150246, 8.437038786902136723517902288006, 9.338533644357968036090160856466, 10.06001126444314423468106498507