L(s) = 1 | − 2·5-s − 7-s + 2·11-s + 13-s − 6·17-s + 5·19-s − 6·23-s − 25-s − 8·29-s − 8·31-s + 2·35-s − 5·37-s − 8·41-s + 4·43-s + 10·47-s − 6·49-s − 4·53-s − 4·55-s − 14·59-s + 3·61-s − 2·65-s + 13·67-s + 4·71-s + 9·73-s − 2·77-s − 11·79-s + 12·83-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.377·7-s + 0.603·11-s + 0.277·13-s − 1.45·17-s + 1.14·19-s − 1.25·23-s − 1/5·25-s − 1.48·29-s − 1.43·31-s + 0.338·35-s − 0.821·37-s − 1.24·41-s + 0.609·43-s + 1.45·47-s − 6/7·49-s − 0.549·53-s − 0.539·55-s − 1.82·59-s + 0.384·61-s − 0.248·65-s + 1.58·67-s + 0.474·71-s + 1.05·73-s − 0.227·77-s − 1.23·79-s + 1.31·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 2 T + p T^{2} \) |
| 7 | \( 1 + T + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 - T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 - 5 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 8 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 + 5 T + p T^{2} \) |
| 41 | \( 1 + 8 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 - 10 T + p T^{2} \) |
| 53 | \( 1 + 4 T + p T^{2} \) |
| 59 | \( 1 + 14 T + p T^{2} \) |
| 61 | \( 1 - 3 T + p T^{2} \) |
| 67 | \( 1 - 13 T + p T^{2} \) |
| 71 | \( 1 - 4 T + p T^{2} \) |
| 73 | \( 1 - 9 T + p T^{2} \) |
| 79 | \( 1 + 11 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 - 2 T + p T^{2} \) |
| 97 | \( 1 - T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.561576362558388605918318828657, −9.004913189353290265297094882934, −7.972335257658859713952381664704, −7.23561788630982287928838202899, −6.36176902503839563041243175150, −5.31494333285431893846186259722, −4.05174927146180313890169025811, −3.50900323268563987471302746975, −1.91159340940988138724333401775, 0,
1.91159340940988138724333401775, 3.50900323268563987471302746975, 4.05174927146180313890169025811, 5.31494333285431893846186259722, 6.36176902503839563041243175150, 7.23561788630982287928838202899, 7.972335257658859713952381664704, 9.004913189353290265297094882934, 9.561576362558388605918318828657