L(s) = 1 | + (6.30 − 3.63i)5-s + (−4.46 + 7.74i)7-s + (−10.5 − 6.08i)11-s + (−1.73 − 3.00i)13-s + 33.3i·17-s − 33.3·19-s + (−15.8 + 9.16i)23-s + (13.9 − 24.2i)25-s + (−13.6 − 7.85i)29-s + (6.66 + 11.5i)31-s + 65.0i·35-s − 35.3·37-s + (−4.55 + 2.62i)41-s + (20.1 − 34.9i)43-s + (29.9 + 17.2i)47-s + ⋯ |
L(s) = 1 | + (1.26 − 0.727i)5-s + (−0.638 + 1.10i)7-s + (−0.958 − 0.553i)11-s + (−0.133 − 0.231i)13-s + 1.95i·17-s − 1.75·19-s + (−0.690 + 0.398i)23-s + (0.558 − 0.968i)25-s + (−0.469 − 0.270i)29-s + (0.215 + 0.372i)31-s + 1.85i·35-s − 0.956·37-s + (−0.111 + 0.0640i)41-s + (0.469 − 0.812i)43-s + (0.637 + 0.367i)47-s + ⋯ |
Λ(s)=(=(864s/2ΓC(s)L(s)(−0.780−0.625i)Λ(3−s)
Λ(s)=(=(864s/2ΓC(s+1)L(s)(−0.780−0.625i)Λ(1−s)
Degree: |
2 |
Conductor: |
864
= 25⋅33
|
Sign: |
−0.780−0.625i
|
Analytic conductor: |
23.5422 |
Root analytic conductor: |
4.85204 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ864(737,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 864, ( :1), −0.780−0.625i)
|
Particular Values
L(23) |
≈ |
0.6606887612 |
L(21) |
≈ |
0.6606887612 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(−6.30+3.63i)T+(12.5−21.6i)T2 |
| 7 | 1+(4.46−7.74i)T+(−24.5−42.4i)T2 |
| 11 | 1+(10.5+6.08i)T+(60.5+104.i)T2 |
| 13 | 1+(1.73+3.00i)T+(−84.5+146.i)T2 |
| 17 | 1−33.3iT−289T2 |
| 19 | 1+33.3T+361T2 |
| 23 | 1+(15.8−9.16i)T+(264.5−458.i)T2 |
| 29 | 1+(13.6+7.85i)T+(420.5+728.i)T2 |
| 31 | 1+(−6.66−11.5i)T+(−480.5+832.i)T2 |
| 37 | 1+35.3T+1.36e3T2 |
| 41 | 1+(4.55−2.62i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(−20.1+34.9i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(−29.9−17.2i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1−15.9iT−2.80e3T2 |
| 59 | 1+(16.8−9.70i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(−7.12+12.3i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(16.8+29.1i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1−21.5iT−5.04e3T2 |
| 73 | 1−35.0T+5.32e3T2 |
| 79 | 1+(75.5−130.i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−107.−62.2i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1+58.9iT−7.92e3T2 |
| 97 | 1+(43.2−74.8i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31117237018221523209813143524, −9.384832201276182837204016794665, −8.643939636870364896450484333666, −8.125988346037981950058721816403, −6.47755416343697063047679761894, −5.83243667668603924916652936961, −5.37783260039226569598165938187, −3.97731428877827932983276341526, −2.55843662476502723451462132694, −1.76862002841907408786818491462,
0.19123558052287117443161918066, 2.07218503957746347984291045877, 2.86204218801214152385674997793, 4.22283146370193264669031610602, 5.24555622566095279425613842563, 6.35490399474953389957909821683, 6.93535374359344082217309029254, 7.69717631048480851743682868550, 9.057280178929481940571223749055, 9.855177543568564516837001011204