Properties

Label 2-8664-1.1-c1-0-114
Degree $2$
Conductor $8664$
Sign $-1$
Analytic cond. $69.1823$
Root an. cond. $8.31759$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3.23·5-s − 0.236·7-s + 9-s + 1.23·11-s + 3.47·13-s − 3.23·15-s − 4·17-s − 0.236·21-s − 3.23·23-s + 5.47·25-s + 27-s − 1.52·29-s + 4.70·31-s + 1.23·33-s + 0.763·35-s + 7·37-s + 3.47·39-s − 2.47·41-s − 6.23·43-s − 3.23·45-s − 2·47-s − 6.94·49-s − 4·51-s − 12.1·53-s − 4.00·55-s + 3.70·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.44·5-s − 0.0892·7-s + 0.333·9-s + 0.372·11-s + 0.962·13-s − 0.835·15-s − 0.970·17-s − 0.0515·21-s − 0.674·23-s + 1.09·25-s + 0.192·27-s − 0.283·29-s + 0.845·31-s + 0.215·33-s + 0.129·35-s + 1.15·37-s + 0.555·39-s − 0.386·41-s − 0.950·43-s − 0.482·45-s − 0.291·47-s − 0.992·49-s − 0.560·51-s − 1.67·53-s − 0.539·55-s + 0.482·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8664\)    =    \(2^{3} \cdot 3 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(69.1823\)
Root analytic conductor: \(8.31759\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + 3.23T + 5T^{2} \)
7 \( 1 + 0.236T + 7T^{2} \)
11 \( 1 - 1.23T + 11T^{2} \)
13 \( 1 - 3.47T + 13T^{2} \)
17 \( 1 + 4T + 17T^{2} \)
23 \( 1 + 3.23T + 23T^{2} \)
29 \( 1 + 1.52T + 29T^{2} \)
31 \( 1 - 4.70T + 31T^{2} \)
37 \( 1 - 7T + 37T^{2} \)
41 \( 1 + 2.47T + 41T^{2} \)
43 \( 1 + 6.23T + 43T^{2} \)
47 \( 1 + 2T + 47T^{2} \)
53 \( 1 + 12.1T + 53T^{2} \)
59 \( 1 - 3.70T + 59T^{2} \)
61 \( 1 - 11T + 61T^{2} \)
67 \( 1 - 0.236T + 67T^{2} \)
71 \( 1 - 13.4T + 71T^{2} \)
73 \( 1 - 3.47T + 73T^{2} \)
79 \( 1 - 8.70T + 79T^{2} \)
83 \( 1 + 8T + 83T^{2} \)
89 \( 1 - 3.70T + 89T^{2} \)
97 \( 1 - 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66803691484786354237330938802, −6.59710349922343494274312298454, −6.46689067296174987919532991949, −5.16253712460357598094782771442, −4.35818300936969460260950290767, −3.83903873452485684301066282633, −3.28524480456188948746071594263, −2.29886533864765185381890586651, −1.20090534844219592675348220209, 0, 1.20090534844219592675348220209, 2.29886533864765185381890586651, 3.28524480456188948746071594263, 3.83903873452485684301066282633, 4.35818300936969460260950290767, 5.16253712460357598094782771442, 6.46689067296174987919532991949, 6.59710349922343494274312298454, 7.66803691484786354237330938802

Graph of the $Z$-function along the critical line