Properties

Label 2-867-51.50-c0-0-1
Degree $2$
Conductor $867$
Sign $0.242 + 0.970i$
Analytic cond. $0.432689$
Root an. cond. $0.657791$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + 4-s i·7-s − 9-s i·12-s − 13-s + 16-s + 19-s − 21-s − 25-s + i·27-s i·28-s + i·31-s − 36-s + i·37-s + ⋯
L(s)  = 1  i·3-s + 4-s i·7-s − 9-s i·12-s − 13-s + 16-s + 19-s − 21-s − 25-s + i·27-s i·28-s + i·31-s − 36-s + i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(867\)    =    \(3 \cdot 17^{2}\)
Sign: $0.242 + 0.970i$
Analytic conductor: \(0.432689\)
Root analytic conductor: \(0.657791\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{867} (866, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 867,\ (\ :0),\ 0.242 + 0.970i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.160425197\)
\(L(\frac12)\) \(\approx\) \(1.160425197\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + iT \)
17 \( 1 \)
good2 \( 1 - T^{2} \)
5 \( 1 + T^{2} \)
7 \( 1 + iT - T^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + T + T^{2} \)
19 \( 1 - T + T^{2} \)
23 \( 1 + T^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 - iT - T^{2} \)
37 \( 1 - iT - T^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 - T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + iT - T^{2} \)
67 \( 1 + T + T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + 2iT - T^{2} \)
79 \( 1 - 2iT - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - iT - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33767084617862649312571636417, −9.436042633965790400104060375776, −8.082946923644960185747051369010, −7.47840772732253939270171255021, −6.95648980062904258100146040314, −6.08873293668499679089115136713, −5.04471798888127980928689362369, −3.51199453032489949428313646278, −2.48269598618486767460476972861, −1.28083172523360863352780036711, 2.23116220643134679818699238569, 3.00651133261333091032583759329, 4.23371768031106467026078435975, 5.52547231356637765662424170241, 5.85362616513724557997568557462, 7.20775196127926524992927847255, 7.985556402735614193597198120505, 9.094861609146242046503673493876, 9.724572920709902619385376824533, 10.48063571240119516119357018170

Graph of the $Z$-function along the critical line