L(s) = 1 | − i·3-s + 4-s − i·7-s − 9-s − i·12-s − 13-s + 16-s + 19-s − 21-s − 25-s + i·27-s − i·28-s + i·31-s − 36-s + i·37-s + ⋯ |
L(s) = 1 | − i·3-s + 4-s − i·7-s − 9-s − i·12-s − 13-s + 16-s + 19-s − 21-s − 25-s + i·27-s − i·28-s + i·31-s − 36-s + i·37-s + ⋯ |
Λ(s)=(=(867s/2ΓC(s)L(s)(0.242+0.970i)Λ(1−s)
Λ(s)=(=(867s/2ΓC(s)L(s)(0.242+0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
867
= 3⋅172
|
Sign: |
0.242+0.970i
|
Analytic conductor: |
0.432689 |
Root analytic conductor: |
0.657791 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ867(866,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 867, ( :0), 0.242+0.970i)
|
Particular Values
L(21) |
≈ |
1.160425197 |
L(21) |
≈ |
1.160425197 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 17 | 1 |
good | 2 | 1−T2 |
| 5 | 1+T2 |
| 7 | 1+iT−T2 |
| 11 | 1+T2 |
| 13 | 1+T+T2 |
| 19 | 1−T+T2 |
| 23 | 1+T2 |
| 29 | 1+T2 |
| 31 | 1−iT−T2 |
| 37 | 1−iT−T2 |
| 41 | 1+T2 |
| 43 | 1−T+T2 |
| 47 | 1−T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1+iT−T2 |
| 67 | 1+T+T2 |
| 71 | 1+T2 |
| 73 | 1+2iT−T2 |
| 79 | 1−2iT−T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1−iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.33767084617862649312571636417, −9.436042633965790400104060375776, −8.082946923644960185747051369010, −7.47840772732253939270171255021, −6.95648980062904258100146040314, −6.08873293668499679089115136713, −5.04471798888127980928689362369, −3.51199453032489949428313646278, −2.48269598618486767460476972861, −1.28083172523360863352780036711,
2.23116220643134679818699238569, 3.00651133261333091032583759329, 4.23371768031106467026078435975, 5.52547231356637765662424170241, 5.85362616513724557997568557462, 7.20775196127926524992927847255, 7.985556402735614193597198120505, 9.094861609146242046503673493876, 9.724572920709902619385376824533, 10.48063571240119516119357018170