L(s) = 1 | + (0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)7-s + 1.00i·9-s + (−0.707 − 0.707i)12-s + 13-s + 16-s + i·19-s + 1.00·21-s + i·25-s + (−0.707 + 0.707i)27-s + (−0.707 + 0.707i)28-s + (−0.707 − 0.707i)31-s − 1.00i·36-s + (−0.707 − 0.707i)37-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)7-s + 1.00i·9-s + (−0.707 − 0.707i)12-s + 13-s + 16-s + i·19-s + 1.00·21-s + i·25-s + (−0.707 + 0.707i)27-s + (−0.707 + 0.707i)28-s + (−0.707 − 0.707i)31-s − 1.00i·36-s + (−0.707 − 0.707i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.099841645\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.099841645\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + T^{2} \) |
| 5 | \( 1 - iT^{2} \) |
| 7 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 19 | \( 1 - iT - T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - iT^{2} \) |
| 31 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 37 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 79 | \( 1 + (-1.41 + 1.41i)T - iT^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48508039029054972955687261241, −9.456885628190360000703557496621, −8.864628655111482119643538539627, −8.056377028364969974934687296803, −7.44260067109104452478358349948, −5.81377201354538384911422407052, −4.96110723840541831610336365924, −3.98667549045219346519891785970, −3.50458912913076591424491464664, −1.64694741879472401837446572265,
1.35190921737122512040792026496, 2.73495878606900186375558057308, 3.87004982682175354458229525103, 4.92373286025177504971815052936, 5.91396263915775707123898883969, 6.93877467487005068763566155171, 8.068490484758100845757276737252, 8.597649720194864544514793408364, 9.075784581496676114162104654934, 10.07816280356452638521178046872