Properties

Label 2-867-51.47-c0-0-1
Degree $2$
Conductor $867$
Sign $0.788 - 0.615i$
Analytic cond. $0.432689$
Root an. cond. $0.657791$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)7-s + 1.00i·9-s + (−0.707 − 0.707i)12-s + 13-s + 16-s + i·19-s + 1.00·21-s + i·25-s + (−0.707 + 0.707i)27-s + (−0.707 + 0.707i)28-s + (−0.707 − 0.707i)31-s − 1.00i·36-s + (−0.707 − 0.707i)37-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)7-s + 1.00i·9-s + (−0.707 − 0.707i)12-s + 13-s + 16-s + i·19-s + 1.00·21-s + i·25-s + (−0.707 + 0.707i)27-s + (−0.707 + 0.707i)28-s + (−0.707 − 0.707i)31-s − 1.00i·36-s + (−0.707 − 0.707i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(867\)    =    \(3 \cdot 17^{2}\)
Sign: $0.788 - 0.615i$
Analytic conductor: \(0.432689\)
Root analytic conductor: \(0.657791\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{867} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 867,\ (\ :0),\ 0.788 - 0.615i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.099841645\)
\(L(\frac12)\) \(\approx\) \(1.099841645\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.707 - 0.707i)T \)
17 \( 1 \)
good2 \( 1 + T^{2} \)
5 \( 1 - iT^{2} \)
7 \( 1 + (-0.707 + 0.707i)T - iT^{2} \)
11 \( 1 + iT^{2} \)
13 \( 1 - T + T^{2} \)
19 \( 1 - iT - T^{2} \)
23 \( 1 + iT^{2} \)
29 \( 1 - iT^{2} \)
31 \( 1 + (0.707 + 0.707i)T + iT^{2} \)
37 \( 1 + (0.707 + 0.707i)T + iT^{2} \)
41 \( 1 + iT^{2} \)
43 \( 1 + iT - T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 + T^{2} \)
61 \( 1 + (-0.707 + 0.707i)T - iT^{2} \)
67 \( 1 + T + T^{2} \)
71 \( 1 - iT^{2} \)
73 \( 1 + (1.41 + 1.41i)T + iT^{2} \)
79 \( 1 + (-1.41 + 1.41i)T - iT^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.48508039029054972955687261241, −9.456885628190360000703557496621, −8.864628655111482119643538539627, −8.056377028364969974934687296803, −7.44260067109104452478358349948, −5.81377201354538384911422407052, −4.96110723840541831610336365924, −3.98667549045219346519891785970, −3.50458912913076591424491464664, −1.64694741879472401837446572265, 1.35190921737122512040792026496, 2.73495878606900186375558057308, 3.87004982682175354458229525103, 4.92373286025177504971815052936, 5.91396263915775707123898883969, 6.93877467487005068763566155171, 8.068490484758100845757276737252, 8.597649720194864544514793408364, 9.075784581496676114162104654934, 10.07816280356452638521178046872

Graph of the $Z$-function along the critical line