L(s) = 1 | + (0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)7-s + 1.00i·9-s + (−0.707 − 0.707i)12-s + 13-s + 16-s + i·19-s + 1.00·21-s + i·25-s + (−0.707 + 0.707i)27-s + (−0.707 + 0.707i)28-s + (−0.707 − 0.707i)31-s − 1.00i·36-s + (−0.707 − 0.707i)37-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s − 4-s + (0.707 − 0.707i)7-s + 1.00i·9-s + (−0.707 − 0.707i)12-s + 13-s + 16-s + i·19-s + 1.00·21-s + i·25-s + (−0.707 + 0.707i)27-s + (−0.707 + 0.707i)28-s + (−0.707 − 0.707i)31-s − 1.00i·36-s + (−0.707 − 0.707i)37-s + ⋯ |
Λ(s)=(=(867s/2ΓC(s)L(s)(0.788−0.615i)Λ(1−s)
Λ(s)=(=(867s/2ΓC(s)L(s)(0.788−0.615i)Λ(1−s)
Degree: |
2 |
Conductor: |
867
= 3⋅172
|
Sign: |
0.788−0.615i
|
Analytic conductor: |
0.432689 |
Root analytic conductor: |
0.657791 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ867(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 867, ( :0), 0.788−0.615i)
|
Particular Values
L(21) |
≈ |
1.099841645 |
L(21) |
≈ |
1.099841645 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.707−0.707i)T |
| 17 | 1 |
good | 2 | 1+T2 |
| 5 | 1−iT2 |
| 7 | 1+(−0.707+0.707i)T−iT2 |
| 11 | 1+iT2 |
| 13 | 1−T+T2 |
| 19 | 1−iT−T2 |
| 23 | 1+iT2 |
| 29 | 1−iT2 |
| 31 | 1+(0.707+0.707i)T+iT2 |
| 37 | 1+(0.707+0.707i)T+iT2 |
| 41 | 1+iT2 |
| 43 | 1+iT−T2 |
| 47 | 1−T2 |
| 53 | 1+T2 |
| 59 | 1+T2 |
| 61 | 1+(−0.707+0.707i)T−iT2 |
| 67 | 1+T+T2 |
| 71 | 1−iT2 |
| 73 | 1+(1.41+1.41i)T+iT2 |
| 79 | 1+(−1.41+1.41i)T−iT2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1+(−0.707−0.707i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.48508039029054972955687261241, −9.456885628190360000703557496621, −8.864628655111482119643538539627, −8.056377028364969974934687296803, −7.44260067109104452478358349948, −5.81377201354538384911422407052, −4.96110723840541831610336365924, −3.98667549045219346519891785970, −3.50458912913076591424491464664, −1.64694741879472401837446572265,
1.35190921737122512040792026496, 2.73495878606900186375558057308, 3.87004982682175354458229525103, 4.92373286025177504971815052936, 5.91396263915775707123898883969, 6.93877467487005068763566155171, 8.068490484758100845757276737252, 8.597649720194864544514793408364, 9.075784581496676114162104654934, 10.07816280356452638521178046872