Properties

Label 2-867-1.1-c1-0-23
Degree $2$
Conductor $867$
Sign $1$
Analytic cond. $6.92302$
Root an. cond. $2.63116$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.907·2-s + 3-s − 1.17·4-s + 3.19·5-s + 0.907·6-s + 3.56·7-s − 2.88·8-s + 9-s + 2.89·10-s − 3.27·11-s − 1.17·12-s + 5.58·13-s + 3.23·14-s + 3.19·15-s − 0.259·16-s + 0.907·18-s − 4.23·19-s − 3.75·20-s + 3.56·21-s − 2.97·22-s − 4.60·23-s − 2.88·24-s + 5.19·25-s + 5.06·26-s + 27-s − 4.19·28-s + 2.08·29-s + ⋯
L(s)  = 1  + 0.641·2-s + 0.577·3-s − 0.588·4-s + 1.42·5-s + 0.370·6-s + 1.34·7-s − 1.01·8-s + 0.333·9-s + 0.915·10-s − 0.987·11-s − 0.339·12-s + 1.54·13-s + 0.863·14-s + 0.824·15-s − 0.0649·16-s + 0.213·18-s − 0.971·19-s − 0.840·20-s + 0.777·21-s − 0.633·22-s − 0.959·23-s − 0.588·24-s + 1.03·25-s + 0.993·26-s + 0.192·27-s − 0.792·28-s + 0.387·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(867\)    =    \(3 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(6.92302\)
Root analytic conductor: \(2.63116\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 867,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.042232531\)
\(L(\frac12)\) \(\approx\) \(3.042232531\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - 0.907T + 2T^{2} \)
5 \( 1 - 3.19T + 5T^{2} \)
7 \( 1 - 3.56T + 7T^{2} \)
11 \( 1 + 3.27T + 11T^{2} \)
13 \( 1 - 5.58T + 13T^{2} \)
19 \( 1 + 4.23T + 19T^{2} \)
23 \( 1 + 4.60T + 23T^{2} \)
29 \( 1 - 2.08T + 29T^{2} \)
31 \( 1 - 0.448T + 31T^{2} \)
37 \( 1 + 0.742T + 37T^{2} \)
41 \( 1 + 4.49T + 41T^{2} \)
43 \( 1 - 6.10T + 43T^{2} \)
47 \( 1 + 2.26T + 47T^{2} \)
53 \( 1 - 7.55T + 53T^{2} \)
59 \( 1 + 2.83T + 59T^{2} \)
61 \( 1 + 3.91T + 61T^{2} \)
67 \( 1 + 14.5T + 67T^{2} \)
71 \( 1 + 3.64T + 71T^{2} \)
73 \( 1 - 11.6T + 73T^{2} \)
79 \( 1 + 5.63T + 79T^{2} \)
83 \( 1 + 3.92T + 83T^{2} \)
89 \( 1 - 14.6T + 89T^{2} \)
97 \( 1 + 0.828T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24443321313563227406041956087, −9.160276773479815496321130652964, −8.528839339085800699080903969174, −7.910453843802022386769396538167, −6.33679786566951091526258207142, −5.66683878502573002598064107319, −4.84489250682567367306647871608, −3.92769057528520176240743761640, −2.58842529892019162046232543403, −1.55904695566808867345971275389, 1.55904695566808867345971275389, 2.58842529892019162046232543403, 3.92769057528520176240743761640, 4.84489250682567367306647871608, 5.66683878502573002598064107319, 6.33679786566951091526258207142, 7.910453843802022386769396538167, 8.528839339085800699080903969174, 9.160276773479815496321130652964, 10.24443321313563227406041956087

Graph of the $Z$-function along the critical line