L(s) = 1 | + 8·4-s + 4·13-s + 40·16-s + 24·47-s + 32·52-s + 160·64-s − 16·67-s − 81-s + 20·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 42·169-s + 173-s + 179-s + 181-s + 192·188-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | + 4·4-s + 1.10·13-s + 10·16-s + 3.50·47-s + 4.43·52-s + 20·64-s − 1.95·67-s − 1/9·81-s + 1.97·103-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 3.23·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 14.0·188-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯ |
Λ(s)=(=((34⋅178)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅178)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅178
|
Sign: |
1
|
Analytic conductor: |
2297.12 |
Root analytic conductor: |
2.63116 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅178, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
15.02886778 |
L(21) |
≈ |
15.02886778 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C22 | 1+T4 |
| 17 | | 1 |
good | 2 | C2 | (1−pT2)4 |
| 5 | C23 | 1−49T4+p4T8 |
| 7 | C23 | 1−94T4+p4T8 |
| 11 | C23 | 1−73T4+p4T8 |
| 13 | C2 | (1−T+pT2)4 |
| 19 | C22 | (1−37T2+p2T4)2 |
| 23 | C23 | 1+167T4+p4T8 |
| 29 | C23 | 1−1198T4+p4T8 |
| 31 | C23 | 1+1442T4+p4T8 |
| 37 | C23 | 1+626T4+p4T8 |
| 41 | C23 | 1+1967T4+p4T8 |
| 43 | C22 | (1−37T2+p2T4)2 |
| 47 | C2 | (1−6T+pT2)4 |
| 53 | C22 | (1−70T2+p2T4)2 |
| 59 | C22 | (1−82T2+p2T4)2 |
| 61 | C23 | 1−4078T4+p4T8 |
| 67 | C2 | (1+4T+pT2)4 |
| 71 | C23 | 1−10078T4+p4T8 |
| 73 | C22×C22 | (1−24T+288T2−24pT3+p2T4)(1+24T+288T2+24pT3+p2T4) |
| 79 | C23 | 1−9118T4+p4T8 |
| 83 | C22 | (1−130T2+p2T4)2 |
| 89 | C2 | (1+pT2)4 |
| 97 | C23 | 1−14974T4+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.21066038262213218237400892302, −7.05227474450183067054582144474, −7.00448533804454035030760724083, −6.57043846800013997310569913738, −6.41328134376657296504451112001, −6.02825478777099626855272140848, −6.02496317141060105256383324225, −5.92568082293885500060104968465, −5.67709935703679624950240077231, −5.43742112121643895585287664639, −5.09657817114600806386762546556, −4.63167706717331166262869664550, −4.52533707973565570620088048009, −3.87869288877347300655668065745, −3.74444128469671896603943371645, −3.48893680702854685641541075935, −3.39528092979712272246478327571, −2.83102171316810189339802850338, −2.67955178810694344772057441194, −2.43594688520711333077623419212, −2.28909075395878645021437729485, −1.70001946305155502000231631962, −1.65255687833407967701485660321, −1.06395671732091897442757008800, −0.945693231677351886500393808523,
0.945693231677351886500393808523, 1.06395671732091897442757008800, 1.65255687833407967701485660321, 1.70001946305155502000231631962, 2.28909075395878645021437729485, 2.43594688520711333077623419212, 2.67955178810694344772057441194, 2.83102171316810189339802850338, 3.39528092979712272246478327571, 3.48893680702854685641541075935, 3.74444128469671896603943371645, 3.87869288877347300655668065745, 4.52533707973565570620088048009, 4.63167706717331166262869664550, 5.09657817114600806386762546556, 5.43742112121643895585287664639, 5.67709935703679624950240077231, 5.92568082293885500060104968465, 6.02496317141060105256383324225, 6.02825478777099626855272140848, 6.41328134376657296504451112001, 6.57043846800013997310569913738, 7.00448533804454035030760724083, 7.05227474450183067054582144474, 7.21066038262213218237400892302