L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.923 − 0.382i)3-s + 0.999i·4-s + (0.923 − 0.382i)6-s + (1.53 + 3.69i)7-s + (−2.12 − 2.12i)8-s + (0.707 + 0.707i)9-s + (−3.69 + 1.53i)11-s + (0.382 − 0.923i)12-s + 2i·13-s + (−3.69 − 1.53i)14-s + 1.00·16-s − 18-s + (2.82 − 2.82i)19-s − 4i·21-s + (1.53 − 3.69i)22-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.533 − 0.220i)3-s + 0.499i·4-s + (0.377 − 0.156i)6-s + (0.578 + 1.39i)7-s + (−0.750 − 0.750i)8-s + (0.235 + 0.235i)9-s + (−1.11 + 0.461i)11-s + (0.110 − 0.266i)12-s + 0.554i·13-s + (−0.987 − 0.409i)14-s + 0.250·16-s − 0.235·18-s + (0.648 − 0.648i)19-s − 0.872i·21-s + (0.326 − 0.787i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.892 + 0.451i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.892 + 0.451i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.107567 - 0.450611i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.107567 - 0.450611i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.923 + 0.382i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.707 - 0.707i)T - 2iT^{2} \) |
| 5 | \( 1 + (-3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (-1.53 - 3.69i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (3.69 - 1.53i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 19 | \( 1 + (-2.82 + 2.82i)T - 19iT^{2} \) |
| 23 | \( 1 + (3.69 - 1.53i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (3.69 + 1.53i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (7.39 + 3.06i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-3.06 - 7.39i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-2.82 - 2.82i)T + 43iT^{2} \) |
| 47 | \( 1 + 8iT - 47T^{2} \) |
| 53 | \( 1 + (4.24 - 4.24i)T - 53iT^{2} \) |
| 59 | \( 1 + (8.48 + 8.48i)T + 59iT^{2} \) |
| 61 | \( 1 + (3.06 + 7.39i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 12T + 67T^{2} \) |
| 71 | \( 1 + (11.0 + 4.59i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-3.69 + 1.53i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-8.48 + 8.48i)T - 83iT^{2} \) |
| 89 | \( 1 - 10iT - 89T^{2} \) |
| 97 | \( 1 + (6.12 - 14.7i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69182919190365134940878585799, −9.447149829306112268826808457722, −8.973631624598480670125491492538, −7.942402430497667136109978708642, −7.44579903227125568756862872030, −6.41443883254406162827975304356, −5.48718597286998652450252668760, −4.71669206651190047073177134144, −3.12901089186131961924252782007, −1.98285833781628273020866944265,
0.28661871387371065422792395330, 1.44949207830812969219427662115, 3.00031272245232533094585278697, 4.32157030363803968598953441947, 5.27806591767376393589506170397, 6.00152323935995499992810918745, 7.26577795361799075223828910876, 8.018000255765295395238344878570, 8.967037461775751096817602259226, 10.21384924867289928365689595513