L(s) = 1 | + (1.86 + 1.86i)2-s + (0.382 + 0.923i)3-s + 4.95i·4-s + (2.05 − 0.850i)5-s + (−1.00 + 2.43i)6-s + (2.13 + 0.885i)7-s + (−5.50 + 5.50i)8-s + (−0.707 + 0.707i)9-s + (5.41 + 2.24i)10-s + (0.746 − 1.80i)11-s + (−4.57 + 1.89i)12-s − 1.32i·13-s + (2.33 + 5.63i)14-s + (1.57 + 1.57i)15-s − 10.6·16-s + ⋯ |
L(s) = 1 | + (1.31 + 1.31i)2-s + (0.220 + 0.533i)3-s + 2.47i·4-s + (0.918 − 0.380i)5-s + (−0.411 + 0.994i)6-s + (0.808 + 0.334i)7-s + (−1.94 + 1.94i)8-s + (−0.235 + 0.235i)9-s + (1.71 + 0.708i)10-s + (0.225 − 0.543i)11-s + (−1.32 + 0.546i)12-s − 0.366i·13-s + (0.624 + 1.50i)14-s + (0.405 + 0.405i)15-s − 2.65·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.774 - 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.33322 + 3.74152i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.33322 + 3.74152i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.382 - 0.923i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-1.86 - 1.86i)T + 2iT^{2} \) |
| 5 | \( 1 + (-2.05 + 0.850i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (-2.13 - 0.885i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.746 + 1.80i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 1.32iT - 13T^{2} \) |
| 19 | \( 1 + (4.20 + 4.20i)T + 19iT^{2} \) |
| 23 | \( 1 + (-1.82 + 4.41i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-0.159 + 0.0661i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-0.170 - 0.410i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (2.03 + 4.91i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (3.71 + 1.53i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (5.89 - 5.89i)T - 43iT^{2} \) |
| 47 | \( 1 + 2.38iT - 47T^{2} \) |
| 53 | \( 1 + (-0.514 - 0.514i)T + 53iT^{2} \) |
| 59 | \( 1 + (8.33 - 8.33i)T - 59iT^{2} \) |
| 61 | \( 1 + (8.02 + 3.32i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 14.1T + 67T^{2} \) |
| 71 | \( 1 + (2.33 + 5.63i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-9.75 + 4.03i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-0.267 + 0.645i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-6.03 - 6.03i)T + 83iT^{2} \) |
| 89 | \( 1 - 5.40iT - 89T^{2} \) |
| 97 | \( 1 + (4.35 - 1.80i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59300299150374421437219314683, −9.224585084761111369459976383165, −8.607594534554913374347951246629, −7.921378633594603458007697386524, −6.71989472833708735117996018842, −5.99216364363408334673388001455, −5.11262328735080520786306830329, −4.67859222617654356443760316803, −3.49459531742427532077297799383, −2.30688924426656809789824795720,
1.58230030871075930494426176483, 1.99663720579560626068640458967, 3.24762655160821314057724715100, 4.28382250873830415738567860482, 5.19151641326648603315303964567, 6.11779949563520960301691120981, 6.87239481762771400980575037345, 8.185210198374708319334375631172, 9.456885166489806479624457261137, 10.10584205324034078540211526630