L(s) = 1 | + (1.46 − 1.46i)2-s + (−0.923 − 0.382i)3-s − 2.27i·4-s + (0.133 − 0.321i)5-s + (−1.90 + 0.790i)6-s + (1.65 + 4.00i)7-s + (−0.394 − 0.394i)8-s + (0.707 + 0.707i)9-s + (−0.275 − 0.663i)10-s + (0.674 − 0.279i)11-s + (−0.868 + 2.09i)12-s − 5.40i·13-s + (8.27 + 3.42i)14-s + (−0.245 + 0.245i)15-s + 3.38·16-s + ⋯ |
L(s) = 1 | + (1.03 − 1.03i)2-s + (−0.533 − 0.220i)3-s − 1.13i·4-s + (0.0595 − 0.143i)5-s + (−0.779 + 0.322i)6-s + (0.627 + 1.51i)7-s + (−0.139 − 0.139i)8-s + (0.235 + 0.235i)9-s + (−0.0869 − 0.209i)10-s + (0.203 − 0.0842i)11-s + (−0.250 + 0.605i)12-s − 1.49i·13-s + (2.21 + 0.916i)14-s + (−0.0634 + 0.0634i)15-s + 0.846·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.299 + 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.299 + 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.10475 - 1.54519i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.10475 - 1.54519i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.923 + 0.382i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-1.46 + 1.46i)T - 2iT^{2} \) |
| 5 | \( 1 + (-0.133 + 0.321i)T + (-3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (-1.65 - 4.00i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.674 + 0.279i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 5.40iT - 13T^{2} \) |
| 19 | \( 1 + (-2.31 + 2.31i)T - 19iT^{2} \) |
| 23 | \( 1 + (-3.28 + 1.36i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (1.67 - 4.04i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-3.05 - 1.26i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (2.65 + 1.09i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (4.53 + 10.9i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-2.64 - 2.64i)T + 43iT^{2} \) |
| 47 | \( 1 - 0.476iT - 47T^{2} \) |
| 53 | \( 1 + (7.16 - 7.16i)T - 53iT^{2} \) |
| 59 | \( 1 + (3.74 + 3.74i)T + 59iT^{2} \) |
| 61 | \( 1 + (-1.35 - 3.27i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 1.55T + 67T^{2} \) |
| 71 | \( 1 + (8.27 + 3.42i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-1.56 + 3.78i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (0.750 - 0.310i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (5.10 - 5.10i)T - 83iT^{2} \) |
| 89 | \( 1 - 9.77iT - 89T^{2} \) |
| 97 | \( 1 + (0.678 - 1.63i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49999548658432451133022299453, −9.232820355972761740259656824273, −8.428497214259981822655082878162, −7.38355361522734970762441869727, −5.99939740600368179843900279657, −5.24127369952245329366974647498, −4.90848828685536454904213605095, −3.33290534412193318491541766837, −2.53715858179382792626193508593, −1.30013283965300081595902641062,
1.34623462694046095696230842885, 3.53180759803479182997351514726, 4.44435349316174834163971676539, 4.80398982810193808571258906862, 6.06387202497726503632675019745, 6.80824681936021698720452695867, 7.33086119908269891102455199916, 8.272794510334179411100005589638, 9.646870986092822833673163167200, 10.35691026858653088269374457190