L(s) = 1 | + (0.762 + 1.84i)2-s + (−0.908 + 1.47i)3-s + (−1.39 + 1.39i)4-s + (0.240 + 0.360i)5-s + (−3.40 − 0.548i)6-s + (2.28 + 1.52i)7-s + (0.0550 + 0.0227i)8-s + (−1.34 − 2.68i)9-s + (−0.479 + 0.717i)10-s + (1.11 + 5.59i)11-s + (−0.787 − 3.32i)12-s + (−1.33 − 1.33i)13-s + (−1.07 + 5.38i)14-s + (−0.749 + 0.0274i)15-s + 4.05i·16-s + ⋯ |
L(s) = 1 | + (0.539 + 1.30i)2-s + (−0.524 + 0.851i)3-s + (−0.696 + 0.696i)4-s + (0.107 + 0.161i)5-s + (−1.39 − 0.224i)6-s + (0.865 + 0.578i)7-s + (0.0194 + 0.00805i)8-s + (−0.449 − 0.893i)9-s + (−0.151 + 0.226i)10-s + (0.335 + 1.68i)11-s + (−0.227 − 0.958i)12-s + (−0.370 − 0.370i)13-s + (−0.286 + 1.43i)14-s + (−0.193 + 0.00709i)15-s + 1.01i·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 + 0.343i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 + 0.343i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.327752 - 1.84830i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.327752 - 1.84830i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.908 - 1.47i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.762 - 1.84i)T + (-1.41 + 1.41i)T^{2} \) |
| 5 | \( 1 + (-0.240 - 0.360i)T + (-1.91 + 4.61i)T^{2} \) |
| 7 | \( 1 + (-2.28 - 1.52i)T + (2.67 + 6.46i)T^{2} \) |
| 11 | \( 1 + (-1.11 - 5.59i)T + (-10.1 + 4.20i)T^{2} \) |
| 13 | \( 1 + (1.33 + 1.33i)T + 13iT^{2} \) |
| 19 | \( 1 + (-0.697 + 0.288i)T + (13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (1.79 - 0.356i)T + (21.2 - 8.80i)T^{2} \) |
| 29 | \( 1 + (4.78 - 3.19i)T + (11.0 - 26.7i)T^{2} \) |
| 31 | \( 1 + (-0.0525 - 0.0104i)T + (28.6 + 11.8i)T^{2} \) |
| 37 | \( 1 + (-1.69 + 8.50i)T + (-34.1 - 14.1i)T^{2} \) |
| 41 | \( 1 + (0.901 - 1.34i)T + (-15.6 - 37.8i)T^{2} \) |
| 43 | \( 1 + (-3.22 - 1.33i)T + (30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + (1.44 - 1.44i)T - 47iT^{2} \) |
| 53 | \( 1 + (2.67 + 6.46i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-8.58 - 3.55i)T + (41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (-5.17 + 7.75i)T + (-23.3 - 56.3i)T^{2} \) |
| 67 | \( 1 + 2.50iT - 67T^{2} \) |
| 71 | \( 1 + (6.36 + 1.26i)T + (65.5 + 27.1i)T^{2} \) |
| 73 | \( 1 + (-1.17 + 0.785i)T + (27.9 - 67.4i)T^{2} \) |
| 79 | \( 1 + (9.53 - 1.89i)T + (72.9 - 30.2i)T^{2} \) |
| 83 | \( 1 + (-7.32 + 3.03i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-7.83 - 7.83i)T + 89iT^{2} \) |
| 97 | \( 1 + (-6.22 - 9.31i)T + (-37.1 + 89.6i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55160861528440635989327546563, −9.732726250684388879640802776998, −8.858726896725777872385329241827, −7.84789450469064775924128561889, −7.06100433128083733591860831157, −6.18020308044217237285314769239, −5.25281896209551370172775854116, −4.79450288857090265096899836832, −3.91179494937537780103181452681, −2.09741391250212918900307743733,
0.862368489326040013295703281614, 1.75873485496083625005352589101, 3.00205005144931347204104038702, 4.12752675317621166230193501598, 5.11393062485871298042192958955, 5.97342528969205618603039451697, 7.15092909793040482725883255551, 7.954048659611506076684614146699, 8.906292506123807091139693898920, 10.12599829779576304375004113697