L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s − 4·11-s + 12-s − 2·13-s − 15-s + 16-s + 18-s + 4·19-s − 20-s − 4·22-s + 24-s + 25-s − 2·26-s + 27-s + 2·29-s − 30-s − 8·31-s + 32-s − 4·33-s + 36-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s + 0.288·12-s − 0.554·13-s − 0.258·15-s + 1/4·16-s + 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.852·22-s + 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s + 0.371·29-s − 0.182·30-s − 1.43·31-s + 0.176·32-s − 0.696·33-s + 1/6·36-s + ⋯ |
Λ(s)=(=(8670s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8670s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 5 | 1+T |
| 17 | 1 |
good | 7 | 1+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1+2T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.40561162349510633016588055418, −6.91954332593476671184463510324, −5.90592644132209508720459815133, −5.16366564361131865287337583164, −4.71364359659163093237904792022, −3.74770029001862206571218490220, −3.12938112745889251380126144765, −2.47906030853463410883102479535, −1.51008325733353209593744825657, 0,
1.51008325733353209593744825657, 2.47906030853463410883102479535, 3.12938112745889251380126144765, 3.74770029001862206571218490220, 4.71364359659163093237904792022, 5.16366564361131865287337583164, 5.90592644132209508720459815133, 6.91954332593476671184463510324, 7.40561162349510633016588055418