Properties

Label 2-8670-1.1-c1-0-169
Degree $2$
Conductor $8670$
Sign $-1$
Analytic cond. $69.2302$
Root an. cond. $8.32047$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s − 4·11-s + 12-s − 2·13-s − 15-s + 16-s + 18-s + 4·19-s − 20-s − 4·22-s + 24-s + 25-s − 2·26-s + 27-s + 2·29-s − 30-s − 8·31-s + 32-s − 4·33-s + 36-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s + 0.288·12-s − 0.554·13-s − 0.258·15-s + 1/4·16-s + 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.852·22-s + 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s + 0.371·29-s − 0.182·30-s − 1.43·31-s + 0.176·32-s − 0.696·33-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8670 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8670 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8670\)    =    \(2 \cdot 3 \cdot 5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(69.2302\)
Root analytic conductor: \(8.32047\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8670,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.40561162349510633016588055418, −6.91954332593476671184463510324, −5.90592644132209508720459815133, −5.16366564361131865287337583164, −4.71364359659163093237904792022, −3.74770029001862206571218490220, −3.12938112745889251380126144765, −2.47906030853463410883102479535, −1.51008325733353209593744825657, 0, 1.51008325733353209593744825657, 2.47906030853463410883102479535, 3.12938112745889251380126144765, 3.74770029001862206571218490220, 4.71364359659163093237904792022, 5.16366564361131865287337583164, 5.90592644132209508720459815133, 6.91954332593476671184463510324, 7.40561162349510633016588055418

Graph of the $Z$-function along the critical line