L(s) = 1 | + (1.30 + 0.951i)3-s + (0.190 − 0.587i)5-s + (−1.30 + 0.951i)7-s + (−0.118 − 0.363i)9-s + (1.23 + 3.07i)11-s + (−1.80 − 5.56i)13-s + (0.809 − 0.587i)15-s + (−0.572 + 1.76i)17-s + (−3.92 − 2.85i)19-s − 2.61·21-s − 4·23-s + (3.73 + 2.71i)25-s + (1.69 − 5.20i)27-s + (−5.92 + 4.30i)29-s + (0.336 + 1.03i)31-s + ⋯ |
L(s) = 1 | + (0.755 + 0.549i)3-s + (0.0854 − 0.262i)5-s + (−0.494 + 0.359i)7-s + (−0.0393 − 0.121i)9-s + (0.372 + 0.927i)11-s + (−0.501 − 1.54i)13-s + (0.208 − 0.151i)15-s + (−0.138 + 0.427i)17-s + (−0.900 − 0.654i)19-s − 0.571·21-s − 0.834·23-s + (0.747 + 0.542i)25-s + (0.325 − 1.00i)27-s + (−1.10 + 0.799i)29-s + (0.0605 + 0.186i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 - 0.329i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.944 - 0.329i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12108 + 0.190218i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12108 + 0.190218i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-1.23 - 3.07i)T \) |
good | 3 | \( 1 + (-1.30 - 0.951i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (-0.190 + 0.587i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (1.30 - 0.951i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (1.80 + 5.56i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (0.572 - 1.76i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (3.92 + 2.85i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + 4T + 23T^{2} \) |
| 29 | \( 1 + (5.92 - 4.30i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.336 - 1.03i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-7.78 + 5.65i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-7.78 - 5.65i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 1.52T + 43T^{2} \) |
| 47 | \( 1 + (-8.54 - 6.20i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-0.190 - 0.587i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-1.92 + 1.40i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (0.572 - 1.76i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 14.4T + 67T^{2} \) |
| 71 | \( 1 + (1.57 - 4.84i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-2.54 + 1.84i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (1.19 + 3.66i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.89 + 8.92i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 4.47T + 89T^{2} \) |
| 97 | \( 1 + (3.80 + 11.7i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.63728589141201142017890207983, −12.97063683353763014490457277602, −12.44868248569036383095529520014, −10.75783256480899482792160194696, −9.625390709378512383913604151011, −8.912621926737496808017444110918, −7.57722725373452583130631703521, −5.95159987271859050498514638788, −4.31896050633542380036399026447, −2.78718946515323995664647819920,
2.34078975853603948679166977390, 4.05643551663732213738238481037, 6.18444278864990889391846223786, 7.28270838749890953004482416683, 8.497903143780048054960115534978, 9.549394276781670604683352469790, 10.90525576995625567920765414624, 12.06882060277819161099230416187, 13.36291278171600563506987517234, 14.00909561356033508879730161101