Properties

Label 2-88-8.5-c5-0-26
Degree $2$
Conductor $88$
Sign $0.703 + 0.710i$
Analytic cond. $14.1137$
Root an. cond. $3.75683$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−5.46 + 1.45i)2-s − 10.1i·3-s + (27.7 − 15.9i)4-s − 11.8i·5-s + (14.7 + 55.4i)6-s + 105.·7-s + (−128. + 127. i)8-s + 139.·9-s + (17.1 + 64.5i)10-s + 121i·11-s + (−161. − 281. i)12-s + 322. i·13-s + (−577. + 153. i)14-s − 119.·15-s + (517. − 883. i)16-s − 462.·17-s + ⋯
L(s)  = 1  + (−0.966 + 0.257i)2-s − 0.651i·3-s + (0.867 − 0.497i)4-s − 0.211i·5-s + (0.167 + 0.629i)6-s + 0.814·7-s + (−0.710 + 0.703i)8-s + 0.575·9-s + (0.0543 + 0.204i)10-s + 0.301i·11-s + (−0.323 − 0.564i)12-s + 0.528i·13-s + (−0.786 + 0.209i)14-s − 0.137·15-s + (0.505 − 0.863i)16-s − 0.388·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.703 + 0.710i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.703 + 0.710i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(88\)    =    \(2^{3} \cdot 11\)
Sign: $0.703 + 0.710i$
Analytic conductor: \(14.1137\)
Root analytic conductor: \(3.75683\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{88} (45, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 88,\ (\ :5/2),\ 0.703 + 0.710i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.23602 - 0.515192i\)
\(L(\frac12)\) \(\approx\) \(1.23602 - 0.515192i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (5.46 - 1.45i)T \)
11 \( 1 - 121iT \)
good3 \( 1 + 10.1iT - 243T^{2} \)
5 \( 1 + 11.8iT - 3.12e3T^{2} \)
7 \( 1 - 105.T + 1.68e4T^{2} \)
13 \( 1 - 322. iT - 3.71e5T^{2} \)
17 \( 1 + 462.T + 1.41e6T^{2} \)
19 \( 1 + 620. iT - 2.47e6T^{2} \)
23 \( 1 - 2.09e3T + 6.43e6T^{2} \)
29 \( 1 + 3.39e3iT - 2.05e7T^{2} \)
31 \( 1 - 8.14e3T + 2.86e7T^{2} \)
37 \( 1 + 1.60e4iT - 6.93e7T^{2} \)
41 \( 1 - 1.23e3T + 1.15e8T^{2} \)
43 \( 1 - 3.64e3iT - 1.47e8T^{2} \)
47 \( 1 + 1.03e4T + 2.29e8T^{2} \)
53 \( 1 + 1.07e4iT - 4.18e8T^{2} \)
59 \( 1 + 9.97e3iT - 7.14e8T^{2} \)
61 \( 1 + 1.48e4iT - 8.44e8T^{2} \)
67 \( 1 - 2.94e4iT - 1.35e9T^{2} \)
71 \( 1 + 4.18e4T + 1.80e9T^{2} \)
73 \( 1 - 2.88e4T + 2.07e9T^{2} \)
79 \( 1 - 2.84e4T + 3.07e9T^{2} \)
83 \( 1 - 7.32e4iT - 3.93e9T^{2} \)
89 \( 1 - 1.06e5T + 5.58e9T^{2} \)
97 \( 1 - 7.50e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95649086053493140645440211729, −11.81187241319051515783707792936, −10.85543975394388736816752270658, −9.577226086856040880834594624970, −8.460921890782666028757338950828, −7.42366945684451196084121712990, −6.49773741955865892750601968868, −4.77618412088572304655608313092, −2.17227474946574946370650743844, −0.921954553013698945380058789684, 1.25599438469824086358066559222, 3.10429500995047035209231738838, 4.78846951775582263949397554456, 6.64623883023300417673507638300, 7.930997124115164793847789297722, 8.948747923026940997247234124275, 10.18584518691277909085665391641, 10.82684719748298489670676648071, 11.89824726085813039548580104111, 13.17036607216202049287142241254

Graph of the $Z$-function along the critical line